File size: 8,427 Bytes
5e5d2bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ae2199
 
 
 
 
5e5d2bc
 
 
d9f893a
5e5d2bc
 
 
7a47d4d
5e5d2bc
 
 
 
d9f893a
5e5d2bc
 
7a47d4d
5e5d2bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aedc188
094d16a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import gradio as gr
import os
import torch

from llama_parse import LlamaParse
from llama_index.core import StorageContext, load_index_from_storage
from llama_index.core.indices import MultiModalVectorStoreIndex
from llama_index.core.schema import Document, ImageDocument
from llama_index.embeddings.huggingface import HuggingFaceEmbedding


example_indexes = {
    "IONIQ 2024": "./iconiq_report_index",
    "Uber 10k 2021": "./uber_index",
}

# device = "cpu"
# if torch.cuda.is_available():
#     device = "cuda"
# elif torch.backends.mps.is_available():
#     device = "mps"

image_embed_model = HuggingFaceEmbedding(
    model_name="llamaindex/vdr-2b-multi-v1",
    device="cpu",
    trust_remote_code=True,
    token=os.getenv("HUGGINGFACE_TOKEN"),
    model_kwargs={"torch_dtype": torch.float16},
    embed_batch_size=2,
)

text_embed_model = HuggingFaceEmbedding(
    model_name="BAAI/bge-small-en",
    device="cpu",
    trust_remote_code=True,
    token=os.getenv("HUGGINGFACE_TOKEN"),
    embed_batch_size=2,
)

def load_index(index_path: str) -> MultiModalVectorStoreIndex:
    storage_context = StorageContext.from_defaults(persist_dir=index_path)
    return load_index_from_storage(
        storage_context,
        embed_model=text_embed_model,
        image_embed_model=image_embed_model,
    )

def create_index(file, llama_parse_key, progress=gr.Progress()):
    if not file or not llama_parse_key:
        return None, "Please provide both a file and LlamaParse API key"
    
    try:        
        progress(0, desc="Initializing LlamaParse...")
        parser = LlamaParse(
            api_key=llama_parse_key,
            take_screenshot=True,
        )

        # Process document
        progress(0.2, desc="Processing document with LlamaParse...")
        md_json_obj = parser.get_json_result(file.name)[0]
        
        progress(0.4, desc="Downloading and processing images...")
        image_dicts = parser.get_images(
            [md_json_obj], 
            download_path=os.path.join(os.path.dirname(file.name), f"{file.name}_images")
        )

        # Create text document
        progress(0.6, desc="Creating text documents...")
        text = ""
        for page in md_json_obj["pages"]:
            text += page["md"] + "\n\n"
        text_docs = [Document(text=text.strip())]

        # Create image documents
        progress(0.8, desc="Creating image documents...")
        image_docs = []
        for image_dict in image_dicts:
            image_docs.append(ImageDocument(text=image_dict["name"], image_path=image_dict["path"]))

        # Create index
        progress(0.9, desc="Creating final index...")
        index = MultiModalVectorStoreIndex.from_documents(
            text_docs + image_docs,
            embed_model=text_embed_model,
            image_embed_model=image_embed_model,
        )
        
        progress(1.0, desc="Complete!")
        return index, "Index created successfully!"
    
    except Exception as e:
        return None, f"Error creating index: {str(e)}"

def run_search(index, query, text_top_k, image_top_k):
    if not index:
        return "Please create or select an index first.", [], []
    retriever = index.as_retriever(
        similarity_top_k=text_top_k,
        image_similarity_top_k=image_top_k,
    )

    image_nodes = retriever.text_to_image_retrieve(query)
    text_nodes = retriever.text_retrieve(query)

    # Extract text and scores from nodes
    text_results = [{"text": node.text, "score": f"{node.score:.3f}"} for node in text_nodes]
    
    # Load images and scores
    image_results = []
    for node in image_nodes:
        if hasattr(node.node, 'image_path') and os.path.exists(node.node.image_path):
            try:
                image_results.append((
                    node.node.image_path,
                    f"Similarity: {node.score:.3f}",
                ))
            except Exception as e:
                print(f"Error loading image {node.node.image_path}: {e}")

    return "Search completed!", text_results, image_results

# Create the Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Multi-Modal Retrieval with LlamaIndex and llamaindex/vdr-2b-multi-v1")
    gr.Markdown("""
This demo shows how to use the new `llamaindex/vdr-2b-multi-v1` model for multi-modal document search.
                
Using this model, we can index images and perform text-to-image retrieval.

This demo compares to pure text retrieval using the `BAAI/bge-small-en` model. Is this a fair comparison? Not really,
but it's the easiest to run in a limited huggingface space, and shows the strengths of screenshot-based retrieval.
"""
    )
    
    with gr.Row():
        with gr.Column():
            # Index selection/creation
            with gr.Tab("Use Existing Index"):
                existing_index_dropdown = gr.Dropdown(
                    choices=list(example_indexes.keys()),
                    label="Select Pre-made Index",
                    value=list(example_indexes.keys())[0]
                )
            
            with gr.Tab("Create New Index"):
                gr.Markdown(
                    """
To create a new index, enter your LlamaParse API key and upload a PDF.

You can get a free API key by signing up [here](https://cloud.llamaindex.ai).

Processing will take a few minutes when creating a new index, depending on the size of the document.
"""
                )
                file_upload = gr.File(label="Upload PDF")
                llama_parse_key = gr.Textbox(
                    label="LlamaParse API Key",
                    type="password"
                )
                create_btn = gr.Button("Create Index")
                create_status = gr.Textbox(label="Status", interactive=False)
            
            # Search controls
            query_input = gr.Textbox(label="Search Query", value="What is the Executive Summary?")
            with gr.Row():
                text_top_k = gr.Slider(
                    minimum=1,
                    maximum=10,
                    value=2,
                    step=1,
                    label="Text Top-K"
                )
                image_top_k = gr.Slider(
                    minimum=1,
                    maximum=10,
                    value=2,
                    step=1,
                    label="Image Top-K"
                )
            search_btn = gr.Button("Search")
            
        with gr.Column():
            # Results display
            status_output = gr.Textbox(label="Search Status")
            image_output = gr.Gallery(
                label="Retrieved Images",
                show_label=True,  # This will show the similarity score captions
                elem_id="gallery"
            )
            text_output = gr.JSON(
                label="Retrieved Text with Similarity Scores",
                elem_id="text_results"
            )
    
    # State
    index_state = gr.State()

    # Load default index on startup
    default_index = load_index(example_indexes["IONIQ 2024"])
    index_state.value = default_index
    
    # Event handlers
    def load_existing_index(index_name):
        if index_name:
            try:
                index = load_index(example_indexes[index_name])
                return index, f"Loaded index: {index_name}"
            except Exception as e:
                return None, f"Error loading index: {str(e)}"
        return None, "No index selected"
    
    existing_index_dropdown.change(
        fn=load_existing_index,
        inputs=[existing_index_dropdown],
        outputs=[index_state, create_status],
        api_name=False
    )
    
    create_btn.click(
        fn=create_index,
        inputs=[file_upload, llama_parse_key],
        outputs=[index_state, create_status],
        api_name=False,
        show_progress=True  # Enable progress bar
    )
    
    search_btn.click(
        fn=run_search,
        inputs=[index_state, query_input, text_top_k, image_top_k],
        outputs=[status_output, text_output, image_output],
        api_name=False
    )

    gr.Markdown("""
This demo was built with [LlamaIndex](https://docs.llamaindex.ai) and [LlamaParse](https://cloud.llamaindex.ai). To see more multi-modal demos, check out the [llama parse examples](https://github.com/run-llama/llama_parse/tree/main/examples/multimodal).
"""
    )

if __name__ == "__main__":
    # Running locally
    demo.launch()