Spaces:
Running
on
T4
Running
on
T4
File size: 8,427 Bytes
5e5d2bc 3ae2199 5e5d2bc d9f893a 5e5d2bc 7a47d4d 5e5d2bc d9f893a 5e5d2bc 7a47d4d 5e5d2bc aedc188 094d16a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
import gradio as gr
import os
import torch
from llama_parse import LlamaParse
from llama_index.core import StorageContext, load_index_from_storage
from llama_index.core.indices import MultiModalVectorStoreIndex
from llama_index.core.schema import Document, ImageDocument
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
example_indexes = {
"IONIQ 2024": "./iconiq_report_index",
"Uber 10k 2021": "./uber_index",
}
# device = "cpu"
# if torch.cuda.is_available():
# device = "cuda"
# elif torch.backends.mps.is_available():
# device = "mps"
image_embed_model = HuggingFaceEmbedding(
model_name="llamaindex/vdr-2b-multi-v1",
device="cpu",
trust_remote_code=True,
token=os.getenv("HUGGINGFACE_TOKEN"),
model_kwargs={"torch_dtype": torch.float16},
embed_batch_size=2,
)
text_embed_model = HuggingFaceEmbedding(
model_name="BAAI/bge-small-en",
device="cpu",
trust_remote_code=True,
token=os.getenv("HUGGINGFACE_TOKEN"),
embed_batch_size=2,
)
def load_index(index_path: str) -> MultiModalVectorStoreIndex:
storage_context = StorageContext.from_defaults(persist_dir=index_path)
return load_index_from_storage(
storage_context,
embed_model=text_embed_model,
image_embed_model=image_embed_model,
)
def create_index(file, llama_parse_key, progress=gr.Progress()):
if not file or not llama_parse_key:
return None, "Please provide both a file and LlamaParse API key"
try:
progress(0, desc="Initializing LlamaParse...")
parser = LlamaParse(
api_key=llama_parse_key,
take_screenshot=True,
)
# Process document
progress(0.2, desc="Processing document with LlamaParse...")
md_json_obj = parser.get_json_result(file.name)[0]
progress(0.4, desc="Downloading and processing images...")
image_dicts = parser.get_images(
[md_json_obj],
download_path=os.path.join(os.path.dirname(file.name), f"{file.name}_images")
)
# Create text document
progress(0.6, desc="Creating text documents...")
text = ""
for page in md_json_obj["pages"]:
text += page["md"] + "\n\n"
text_docs = [Document(text=text.strip())]
# Create image documents
progress(0.8, desc="Creating image documents...")
image_docs = []
for image_dict in image_dicts:
image_docs.append(ImageDocument(text=image_dict["name"], image_path=image_dict["path"]))
# Create index
progress(0.9, desc="Creating final index...")
index = MultiModalVectorStoreIndex.from_documents(
text_docs + image_docs,
embed_model=text_embed_model,
image_embed_model=image_embed_model,
)
progress(1.0, desc="Complete!")
return index, "Index created successfully!"
except Exception as e:
return None, f"Error creating index: {str(e)}"
def run_search(index, query, text_top_k, image_top_k):
if not index:
return "Please create or select an index first.", [], []
retriever = index.as_retriever(
similarity_top_k=text_top_k,
image_similarity_top_k=image_top_k,
)
image_nodes = retriever.text_to_image_retrieve(query)
text_nodes = retriever.text_retrieve(query)
# Extract text and scores from nodes
text_results = [{"text": node.text, "score": f"{node.score:.3f}"} for node in text_nodes]
# Load images and scores
image_results = []
for node in image_nodes:
if hasattr(node.node, 'image_path') and os.path.exists(node.node.image_path):
try:
image_results.append((
node.node.image_path,
f"Similarity: {node.score:.3f}",
))
except Exception as e:
print(f"Error loading image {node.node.image_path}: {e}")
return "Search completed!", text_results, image_results
# Create the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Multi-Modal Retrieval with LlamaIndex and llamaindex/vdr-2b-multi-v1")
gr.Markdown("""
This demo shows how to use the new `llamaindex/vdr-2b-multi-v1` model for multi-modal document search.
Using this model, we can index images and perform text-to-image retrieval.
This demo compares to pure text retrieval using the `BAAI/bge-small-en` model. Is this a fair comparison? Not really,
but it's the easiest to run in a limited huggingface space, and shows the strengths of screenshot-based retrieval.
"""
)
with gr.Row():
with gr.Column():
# Index selection/creation
with gr.Tab("Use Existing Index"):
existing_index_dropdown = gr.Dropdown(
choices=list(example_indexes.keys()),
label="Select Pre-made Index",
value=list(example_indexes.keys())[0]
)
with gr.Tab("Create New Index"):
gr.Markdown(
"""
To create a new index, enter your LlamaParse API key and upload a PDF.
You can get a free API key by signing up [here](https://cloud.llamaindex.ai).
Processing will take a few minutes when creating a new index, depending on the size of the document.
"""
)
file_upload = gr.File(label="Upload PDF")
llama_parse_key = gr.Textbox(
label="LlamaParse API Key",
type="password"
)
create_btn = gr.Button("Create Index")
create_status = gr.Textbox(label="Status", interactive=False)
# Search controls
query_input = gr.Textbox(label="Search Query", value="What is the Executive Summary?")
with gr.Row():
text_top_k = gr.Slider(
minimum=1,
maximum=10,
value=2,
step=1,
label="Text Top-K"
)
image_top_k = gr.Slider(
minimum=1,
maximum=10,
value=2,
step=1,
label="Image Top-K"
)
search_btn = gr.Button("Search")
with gr.Column():
# Results display
status_output = gr.Textbox(label="Search Status")
image_output = gr.Gallery(
label="Retrieved Images",
show_label=True, # This will show the similarity score captions
elem_id="gallery"
)
text_output = gr.JSON(
label="Retrieved Text with Similarity Scores",
elem_id="text_results"
)
# State
index_state = gr.State()
# Load default index on startup
default_index = load_index(example_indexes["IONIQ 2024"])
index_state.value = default_index
# Event handlers
def load_existing_index(index_name):
if index_name:
try:
index = load_index(example_indexes[index_name])
return index, f"Loaded index: {index_name}"
except Exception as e:
return None, f"Error loading index: {str(e)}"
return None, "No index selected"
existing_index_dropdown.change(
fn=load_existing_index,
inputs=[existing_index_dropdown],
outputs=[index_state, create_status],
api_name=False
)
create_btn.click(
fn=create_index,
inputs=[file_upload, llama_parse_key],
outputs=[index_state, create_status],
api_name=False,
show_progress=True # Enable progress bar
)
search_btn.click(
fn=run_search,
inputs=[index_state, query_input, text_top_k, image_top_k],
outputs=[status_output, text_output, image_output],
api_name=False
)
gr.Markdown("""
This demo was built with [LlamaIndex](https://docs.llamaindex.ai) and [LlamaParse](https://cloud.llamaindex.ai). To see more multi-modal demos, check out the [llama parse examples](https://github.com/run-llama/llama_parse/tree/main/examples/multimodal).
"""
)
if __name__ == "__main__":
# Running locally
demo.launch()
|