Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
import transformers | |
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') | |
class Interactive: | |
def __init__(self): | |
self.tokenizer = transformers.AutoTokenizer.from_pretrained('liujch1998/cd-pi') | |
self.model = transformers.AutoModelForSeq2SeqLM.from_pretrained('liujch1998/cd-pi').to(device) | |
self.linear = torch.nn.Linear(self.model.shared.embedding_dim, 1).to(device) | |
self.linear.weight = torch.nn.Parameter(self.model.shared.weight[32099, :].unsqueeze(0)) # (1, D) | |
self.linear.bias = torch.nn.Parameter(self.model.shared.weight[32098, 0].unsqueeze(0)) # (1) | |
self.model.eval() | |
self.t = 2.2247 | |
def run(self, statement): | |
input_ids = self.tokenizer.batch_encode_plus([statement], return_tensors='pt', padding='longest').input_ids.to(device) | |
with torch.no_grad(): | |
output = self.model(input_ids) | |
last_hidden_state = output.last_hidden_state.to(device) # (B=1, L, D) | |
hidden = last_hidden_state[0, -1, :] # (D) | |
logit = self.linear(hidden).squeeze(-1) # () | |
logit_calibrated = logit / self.t | |
score = logit.sigmoid() | |
score_calibrated = logit_calibrated.sigmoid() | |
return { | |
'logit': logit.item(), | |
'logit_calibrated': logit_calibrated.item(), | |
'score': score.item(), | |
'score_calibrated': score_calibrated.item(), | |
} | |
interactive = Interactive() | |
def predict(statement, model): | |
result = interactive.run(statement) | |
return { | |
'True': result['score_calibrated'], | |
'False': 1 - result['score_calibrated'], | |
} | |
examples = [ | |
'If A sits next to B and B sits next to C, then A must sit next to C.', | |
'If A sits next to B and B sits next to C, then A might not sit next to C.', | |
] | |
input_statement = gr.Dropdown(choices=examples, label='Statement:') | |
input_model = gr.Textbox(label='Commonsense statement verification model:', value='liujch1998/cd-pi', interactive=False) | |
output = gr.outputs.Label(num_top_classes=2) | |
description = '''This is a demo for a commonsense statement verification model. Under development.''' | |
gr.Interface( | |
fn=predict, | |
inputs=[input_statement, input_model], | |
outputs=output, | |
title="cd-pi Demo", | |
description=description, | |
).launch() | |