Spaces:
Running
Running
import gradio as gr | |
import json | |
import os | |
import requests | |
CORPUS_BY_DESC = { | |
'RedPajama (LLaMA tokenizer)': 'rpj_v3_c4_llama2', | |
'Pile-val (GPT-2 tokenizer)': 'pile_v3_val', | |
} | |
CORPUS_DESCS = list(CORPUS_BY_DESC.keys()) | |
QUERY_TYPE_BY_DESC = { | |
'1. Count an n-gram': 'count', | |
'2. Compute the probability of the last token in an n-gram': 'compute_prob', | |
'3. Compute the next-token distribution of an (n-1)-gram': 'get_next_token_distribution_approx', | |
'4. Compute the β-gram probability of the last token': 'compute_infgram_prob', | |
'5. Compute the β-gram next-token distribution': 'get_infgram_next_token_distribution_approx', | |
'6. Searching for document containing n-gram(s)': 'get_a_random_document_from_cnf_query_fast_approx', | |
# '7. Analyze an (AI-generated) document using β-gram': 'analyze_document', | |
} | |
QUERY_DESC_BY_TYPE = {v: k for k, v in QUERY_TYPE_BY_DESC.items()} | |
QUERY_DESCS = list(QUERY_TYPE_BY_DESC.keys()) | |
MAX_QUERY_CHARS = 1000 | |
MAX_INPUT_DOC_TOKENS = 1000 | |
MAX_OUTPUT_DOC_TOKENS = 5000 # must be an even number! | |
MAX_CNT_FOR_NTD = 1000 | |
MAX_CLAUSE_FREQ = 10000 | |
MAX_CLAUSE_FREQ_FAST = 1000000 | |
MAX_CLAUSE_FREQ_FAST_APPROX_PER_SHARD = 50000 | |
MAX_DIFF_TOKENS = 100 | |
MAX_DIFF_BYTES = 2 * MAX_DIFF_TOKENS | |
MAX_CLAUSES_IN_CNF = 4 | |
MAX_TERMS_IN_DISJ_CLAUSE = 4 | |
API_IPADDR = os.environ.get('API_IPADDR', None) | |
default_concurrency_limit = os.environ.get('default_concurrency_limit', 10) | |
max_size = os.environ.get('max_size', 100) | |
max_threads = os.environ.get('max_threads', 40) | |
debug = os.environ.get('debug', False) | |
def process(corpus_desc, query_desc, query): | |
corpus = CORPUS_BY_DESC[corpus_desc] | |
query_type = QUERY_TYPE_BY_DESC[query_desc] | |
print(json.dumps({'corpus': corpus, 'query_type': query_type, 'query': query})) | |
data = { | |
'corpus': corpus, | |
'query_type': query_type, | |
'query': query, | |
} | |
if API_IPADDR is None: | |
raise ValueError(f'API_IPADDR envvar is not set!') | |
response = requests.post(f'http://{API_IPADDR}:5000/', json=data) | |
if response.status_code == 200: | |
result = response.json() | |
else: | |
raise ValueError(f'Invalid response: {response.status_code}') | |
# print(result) | |
return result | |
with gr.Blocks() as demo: | |
with gr.Column(): | |
gr.HTML( | |
'''<h1 text-align="center">Infini-gram: An Engine for n-gram / β-gram Language Models with Trillion-Token Corpora</h1> | |
<p style='font-size: 16px;'>This is an engine that processes n-gram / β-gram queries on a text corpus. Please first select the corpus and the type of query, then enter your query and submit.</p> | |
''' | |
) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
corpus_desc = gr.Radio(choices=CORPUS_DESCS, label='Corpus', value=CORPUS_DESCS[0]) | |
with gr.Column(scale=4): | |
query_desc = gr.Radio( | |
choices=QUERY_DESCS, label='Query Type', value=QUERY_DESCS[0], | |
) | |
with gr.Row(visible=True) as row_1: | |
with gr.Column(): | |
gr.HTML('<h2>1. Count an n-gram</h2>') | |
gr.HTML('<p style="font-size: 16px;">This counts the number of times an n-gram appears in the corpus. If you submit an empty input, it will return the total number of tokens in the corpus.</p>') | |
gr.HTML('<p style="font-size: 16px;">Example query: <b>natural language processing</b> (the output is Cnt(natural language processing))</p>') | |
with gr.Row(): | |
with gr.Column(scale=1): | |
count_input = gr.Textbox(placeholder='Enter a string (an n-gram) here', label='Query', interactive=True) | |
with gr.Row(): | |
count_clear = gr.ClearButton(value='Clear', variant='secondary', visible=True) | |
count_submit = gr.Button(value='Submit', variant='primary', visible=True) | |
count_output_tokens = gr.Textbox(label='Tokenized', lines=2, interactive=False) | |
with gr.Column(scale=1): | |
count_output = gr.Label(label='Count', num_top_classes=0) | |
with gr.Row(visible=False) as row_2: | |
with gr.Column(): | |
gr.HTML('<h2>2. Compute the probability of the last token in an n-gram</h2>') | |
gr.HTML('<p style="font-size: 16px;">This computes the n-gram probability of the last token conditioned on the previous tokens (i.e. (n-1)-gram)).</p>') | |
gr.HTML('<p style="font-size: 16px;">Example query: <b>natural language processing</b> (the output is P(processing | natural language), by counting the appearance of the 3-gram "natural language processing" and the 2-gram "natural language", and take the division between the two)</p>') | |
gr.HTML('<p style="font-size: 16px;">Note: The (n-1)-gram needs to exist in the corpus. If the (n-1)-gram is not found in the corpus, an error message will appear.</p>') | |
with gr.Row(): | |
with gr.Column(scale=1): | |
ngram_input = gr.Textbox(placeholder='Enter a string (an n-gram) here', label='Query', interactive=True) | |
with gr.Row(): | |
ngram_clear = gr.ClearButton(value='Clear', variant='secondary', visible=True) | |
ngram_submit = gr.Button(value='Submit', variant='primary', visible=True) | |
ngram_output_tokens = gr.Textbox(label='Tokenized', lines=2, interactive=False) | |
with gr.Column(scale=1): | |
ngram_output = gr.Label(label='Probability', num_top_classes=0) | |
with gr.Row(visible=False) as row_3: | |
with gr.Column(): | |
gr.HTML('<h2>3. Compute the next-token distribution of an (n-1)-gram</h2>') | |
gr.HTML('<p style="font-size: 16px;">This is an extension of the Query 2: It interprets your input as the (n-1)-gram and gives you the full next-token distribution.</p>') | |
gr.HTML('<p style="font-size: 16px;">Example query: <b>natural language</b> (the output is P(* | natural language), for the top-10 tokens *)</p>') | |
gr.HTML(f'<p style="font-size: 16px;">Note: The (n-1)-gram needs to exist in the corpus. If the (n-1)-gram is not found in the corpus, an error message will appear. If the (n-1)-gram appears more than {MAX_CNT_FOR_NTD} times in the corpus, the result will be approximate.</p>') | |
with gr.Row(): | |
with gr.Column(scale=1): | |
a_ntd_input = gr.Textbox(placeholder='Enter a string (an (n-1)-gram) here', label='Query', interactive=True) | |
with gr.Row(): | |
a_ntd_clear = gr.ClearButton(value='Clear', variant='secondary', visible=True) | |
a_ntd_submit = gr.Button(value='Submit', variant='primary', visible=True) | |
a_ntd_output_tokens = gr.Textbox(label='Tokenized', lines=2, interactive=False) | |
with gr.Column(scale=1): | |
a_ntd_output = gr.Label(label='Distribution', num_top_classes=10) | |
with gr.Row(visible=False) as row_4: | |
with gr.Column(): | |
gr.HTML('<h2>4. Compute the β-gram probability of the last token</h2>') | |
gr.HTML('<p style="font-size: 16px;">This computes the β-gram probability of the last token conditioned on the previous tokens. Compared to Query 2 (which uses your entire input for n-gram modeling), here we take the longest suffix that we can find in the corpus.</p>') | |
gr.HTML('<p style="font-size: 16px;">Example query: <b>I love natural language processing</b> (the output is P(processing | natural language), because "natural language" appears in the corpus but "love natural language" doesn\'t; in this case the effective n = 3)</p>') | |
gr.HTML('<p style="font-size: 16px;">Note: It may be possible that the effective n = 1, in which case it reduces to the uni-gram probability of the last token.</p>') | |
with gr.Row(): | |
with gr.Column(scale=1): | |
infgram_input = gr.Textbox(placeholder='Enter a string here', label='Query', interactive=True) | |
with gr.Row(): | |
infgram_clear = gr.ClearButton(value='Clear', variant='secondary', visible=True) | |
infgram_submit = gr.Button(value='Submit', variant='primary', visible=True) | |
infgram_output_tokens = gr.Textbox(label='Tokenized', lines=2, interactive=False) | |
infgram_longest_suffix = gr.Textbox(label='Longest Found Suffix', interactive=False) | |
with gr.Column(scale=1): | |
infgram_output = gr.Label(label='Probability', num_top_classes=0) | |
with gr.Row(visible=False) as row_5: | |
with gr.Column(): | |
gr.HTML('<h2>5. Compute the β-gram next-token distribution</h2>') | |
gr.HTML('<p style="font-size: 16px;">This is similar to Query 3, but with β-gram instead of n-gram.</p>') | |
gr.HTML('<p style="font-size: 16px;">Example query: <b>I love natural language</b> (the output is P(* | natural language), for the top-10 tokens *)</p>') | |
with gr.Row(): | |
with gr.Column(scale=1): | |
a_infntd_input = gr.Textbox(placeholder='Enter a string here', label='Query', interactive=True) | |
with gr.Row(): | |
a_infntd_clear = gr.ClearButton(value='Clear', variant='secondary', visible=True) | |
a_infntd_submit = gr.Button(value='Submit', variant='primary', visible=True) | |
a_infntd_output_tokens = gr.Textbox(label='Tokenized', lines=2, interactive=False) | |
a_infntd_longest_suffix = gr.Textbox(label='Longest Found Suffix', interactive=False) | |
with gr.Column(scale=1): | |
a_infntd_output = gr.Label(label='Distribution', num_top_classes=10) | |
with gr.Row(visible=False) as row_6: | |
with gr.Column(): | |
gr.HTML(f'''<h2>6. Searching for document containing n-gram(s)</h2> | |
<p style="font-size: 16px;">This displays a random document in the corpus that satisfies your query. You can simply enter an n-gram, in which case the document displayed would contain your n-gram. You can also connect multiple n-gram terms with the AND/OR operators, in the <a href="https://en.wikipedia.org/wiki/Conjunctive_normal_form">CNF format</a>, in which case the displayed document contains n-grams such that it satisfies this logical constraint.</p> | |
<p style="font-size: 16px;">Example queries:</p> | |
<ul style="font-size: 16px;"> | |
<li><b>natural language processing</b> (the displayed document would contain "natural language processing")</li> | |
<li><b>natural language processing AND deep learning</b> (the displayed document would contain both "natural language processing" and "deep learning")</li> | |
<li><b>natural language processing OR artificial intelligence AND deep learning OR machine learning</b> (the displayed document would contain at least one of "natural language processing" / "artificial intelligence", and also at least one of "deep learning" / "machine learning")</li> | |
</ul> | |
<p style="font-size: 16px;">If you want another random document, simply hit the Submit button again :)</p> | |
<p style="font-size: 16px;">A few notes:</p> | |
<ul style="font-size: 16px;"> | |
<li>When you write a query in CNF, note that <b>OR has higher precedence than AND</b> (which is contrary to conventions in boolean algebra).</li> | |
<li>If the document is too long, it will be truncated to {MAX_OUTPUT_DOC_TOKENS} tokens.</li> | |
<li>We can only include documents where all terms (or clauses) are separated by no more than {MAX_DIFF_TOKENS} tokens.</li> | |
<li>If you query for two or more clauses, and a clause has more than {MAX_CLAUSE_FREQ_FAST_APPROX_PER_SHARD} matches (per shard), we will search within a random subset of all documents containing that clause.</li> | |
<li>The number of found documents may contain duplicates (e.g., if a document contains your query term twice, it may be counted twice).</li> | |
</ul> | |
<p style="font-size: 16px;">βοΈWARNING: Corpus may contain problematic contents such as PII, toxicity, hate speech, and NSFW text. This tool is merely presenting selected text from the corpus, without any post-hoc safety filtering. It is NOT creating new text. This is a research prototype through which we can expose and examine existing problems with massive text corpora. Please use with caution. Don't be evil :)</p> | |
''') | |
with gr.Row(): | |
with gr.Column(scale=1): | |
a_ard_cnf_input = gr.Textbox(placeholder='Enter a query here', label='Query', interactive=True) | |
with gr.Row(): | |
a_ard_cnf_clear = gr.ClearButton(value='Clear', variant='secondary', visible=True) | |
a_ard_cnf_submit = gr.Button(value='Submit', variant='primary', visible=True) | |
a_ard_cnf_output_tokens = gr.Textbox(label='Tokenized', lines=2, interactive=False) | |
with gr.Column(scale=1): | |
a_ard_cnf_output_message = gr.Label(label='Message', num_top_classes=0) | |
a_ard_cnf_output = gr.HighlightedText(label='Document', show_legend=False, color_map={"-": "red", "0": "green", "1": "cyan", "2": "blue", "3": "magenta"}) | |
with gr.Row(visible=False) as row_7: | |
with gr.Column(): | |
gr.HTML('<h2>7. Analyze an (AI-generated) document using β-gram</h2>') | |
gr.HTML('<p style="font-size: 16px;">This analyzes the document you entered using the β-gram. Each token is highlighted where (1) the color represents its β-gram probability (red is 0.0, blue is 1.0), and (2) the alpha represents the effective n (higher alpha means higher n).</p>') | |
gr.HTML('<p style="font-size: 16px;">If you hover over a token, the tokens preceding it are each highlighted where (1) the color represents the n-gram probability of your selected token, with the n-gram starting from that highlighted token (red is 0.0, blue is 1.0), and (2) the alpha represents the count of the (n-1)-gram starting from that highlighted token (and up to but excluding your selected token) (higher alpha means higher count).</p>') | |
with gr.Row(): | |
with gr.Column(scale=1): | |
doc_analysis_input = gr.Textbox(placeholder='Enter a document here', label='Query', interactive=True, lines=10) | |
with gr.Row(): | |
doc_analysis_clear = gr.ClearButton(value='Clear', variant='secondary', visible=True) | |
doc_analysis_submit = gr.Button(value='Submit', variant='primary', visible=True) | |
with gr.Column(scale=1): | |
doc_analysis_output = gr.HTML(value='', label='Analysis') | |
count_clear.add([count_input, count_output, count_output_tokens]) | |
ngram_clear.add([ngram_input, ngram_output, ngram_output_tokens]) | |
a_ntd_clear.add([a_ntd_input, a_ntd_output, a_ntd_output_tokens]) | |
infgram_clear.add([infgram_input, infgram_output, infgram_output_tokens]) | |
a_infntd_clear.add([a_infntd_input, a_infntd_output, a_infntd_output_tokens, a_infntd_longest_suffix]) | |
a_ard_cnf_clear.add([a_ard_cnf_input, a_ard_cnf_output, a_ard_cnf_output_tokens, a_ard_cnf_output_message]) | |
doc_analysis_clear.add([doc_analysis_input, doc_analysis_output]) | |
count_submit.click(process, inputs=[corpus_desc, query_desc, count_input], outputs=[count_output, count_output_tokens]) | |
ngram_submit.click(process, inputs=[corpus_desc, query_desc, ngram_input], outputs=[ngram_output, ngram_output_tokens]) | |
a_ntd_submit.click(process, inputs=[corpus_desc, query_desc, a_ntd_input], outputs=[a_ntd_output, a_ntd_output_tokens]) | |
infgram_submit.click(process, inputs=[corpus_desc, query_desc, infgram_input], outputs=[infgram_output, infgram_output_tokens, infgram_longest_suffix]) | |
a_infntd_submit.click(process, inputs=[corpus_desc, query_desc, a_infntd_input], outputs=[a_infntd_output, a_infntd_output_tokens, a_infntd_longest_suffix]) | |
a_ard_cnf_submit.click(process, inputs=[corpus_desc, query_desc, a_ard_cnf_input], outputs=[a_ard_cnf_output, a_ard_cnf_output_tokens, a_ard_cnf_output_message]) | |
doc_analysis_submit.click(process, inputs=[corpus_desc, query_desc, doc_analysis_input], outputs=[doc_analysis_output]) | |
def update_query_desc(selection): | |
return { | |
row_1: gr.Row(visible=(selection == QUERY_DESC_BY_TYPE['count'])), | |
row_2: gr.Row(visible=(selection == QUERY_DESC_BY_TYPE['compute_prob'])), | |
row_3: gr.Row(visible=(selection == QUERY_DESC_BY_TYPE['get_next_token_distribution_approx'])), | |
row_4: gr.Row(visible=(selection == QUERY_DESC_BY_TYPE['compute_infgram_prob'])), | |
row_5: gr.Row(visible=(selection == QUERY_DESC_BY_TYPE['get_infgram_next_token_distribution_approx'])), | |
row_6: gr.Row(visible=(selection == QUERY_DESC_BY_TYPE['get_a_random_document_from_cnf_query_fast_approx'])), | |
# row_7: gr.Row(visible=(selection == QUERY_DESC_BY_TYPE['analyze_document'])), | |
} | |
query_desc.change(fn=update_query_desc, inputs=query_desc, outputs=[ | |
row_1, | |
row_2, | |
row_3, | |
row_4, | |
row_5, | |
row_6, | |
# row_7, | |
]) | |
demo.queue( | |
default_concurrency_limit=default_concurrency_limit, | |
max_size=max_size, | |
).launch( | |
max_threads=max_threads, | |
debug=debug, | |
) | |