Spaces:
Running
Running
import gradio as gr | |
import datetime | |
import json | |
import requests | |
from constants import * | |
def process(query_type, index_desc, **kwargs): | |
timestamp = datetime.datetime.now().strftime('%Y%m%d-%H%M%S') | |
index = INDEX_BY_DESC[index_desc] | |
data = { | |
'source': 'hf' if not DEBUG else 'hf-dev', | |
'timestamp': timestamp, | |
'query_type': query_type, | |
'index': index, | |
} | |
data.update(kwargs) | |
print(json.dumps(data)) | |
if API_URL is None: | |
raise ValueError(f'API_URL envvar is not set!') | |
try: | |
response = requests.post(API_URL, json=data, timeout=10) | |
except requests.exceptions.Timeout: | |
raise ValueError('Web request timed out. Please try again later.') | |
except requests.exceptions.RequestException as e: | |
raise ValueError(f'Web request error: {e}') | |
if response.status_code == 200: | |
result = response.json() | |
else: | |
raise ValueError(f'HTTP error {response.status_code}: {response.json()}') | |
if DEBUG: | |
print(result) | |
return result | |
def format_tokenization_info(result): | |
if not ('token_ids' in result and 'tokens' in result): | |
return '' | |
token_ids = result['token_ids'] | |
tokens = result['tokens'] | |
if type(token_ids) == list and all([type(token_id) == int for token_id in token_ids]): | |
output = '[' + " ".join(['"' + token.replace('Ġ', ' ') + '"' for token in tokens]) + '] ' + str(token_ids) | |
else: | |
ttt = [] | |
for token_idss, tokenss in zip(token_ids, tokens): | |
tt = [] | |
for token_ids, tokens in zip(token_idss, tokenss): | |
t = '[' + " ".join(['"' + token.replace('Ġ', ' ') + '"' for token in tokens]) + '] ' + str(token_ids) | |
tt.append(t) | |
tt = '\n'.join(tt) | |
ttt.append(tt) | |
output = '\n\n'.join(ttt) | |
return output | |
def format_doc(doc): | |
formatted = [] | |
if doc['doc_len'] == doc['disp_len']: | |
header = f'[Document #{doc["doc_ix"]}, length = {doc["doc_len"]} tokens]\n\n' | |
else: | |
header = f'[Document #{doc["doc_ix"]}, length = {doc["doc_len"]} tokens ({doc["disp_len"]} tokens displayed)]\n\n' | |
formatted.append((header, None)) | |
formatted += doc['spans'] | |
return formatted | |
def count(index_desc, query): | |
result = process('count', index_desc, query=query) | |
latency = '' if 'latency' not in result else f'{result["latency"]:.3f}' | |
tokenization_info = format_tokenization_info(result) | |
if 'error' in result: | |
count = result['error'] | |
else: | |
count = f'{result["count"]:,}' | |
return latency, tokenization_info, count | |
def prob(index_desc, query): | |
result = process('prob', index_desc, query=query) | |
latency = '' if 'latency' not in result else f'{result["latency"]:.3f}' | |
tokenization_info = format_tokenization_info(result) | |
if 'error' in result: | |
prob = result['error'] | |
elif result['prompt_cnt'] == 0: | |
prob = '(n-1)-gram is not found in the corpus' | |
else: | |
prob = f'{result["prob"]:.4f} ({result["cont_cnt"]:,} / {result["prompt_cnt"]:,})' | |
return latency, tokenization_info, prob | |
def ntd(index_desc, query): | |
result = process('ntd', index_desc, query=query) | |
latency = '' if 'latency' not in result else f'{result["latency"]:.3f}' | |
tokenization_info = format_tokenization_info(result) | |
if 'error' in result: | |
ntd = result['error'] | |
else: | |
result_by_token_id = result['result_by_token_id'] | |
ntd = {} | |
for token_id, r in result_by_token_id.items(): | |
ntd[f'{r["token"]} ({r["cont_cnt"]} / {result["prompt_cnt"]})'] = r['prob'] | |
if ntd == {}: | |
ntd = '(n-1)-gram is not found in the corpus' | |
return latency, tokenization_info, ntd | |
def infgram_prob(index_desc, query): | |
result = process('infgram_prob', index_desc, query=query) | |
latency = '' if 'latency' not in result else f'{result["latency"]:.3f}' | |
tokenization_info = format_tokenization_info(result) | |
if 'error' in result: | |
longest_suffix = '' | |
prob = result['error'] | |
else: | |
longest_suffix = result['longest_suffix'] | |
prob = f'{result["prob"]:.4f} ({result["cont_cnt"]:,} / {result["prompt_cnt"]:,})' | |
return latency, tokenization_info, longest_suffix, prob | |
def infgram_ntd(index_desc, query): | |
result = process('infgram_ntd', index_desc, query=query) | |
latency = '' if 'latency' not in result else f'{result["latency"]:.3f}' | |
tokenization_info = format_tokenization_info(result) | |
if 'error' in result: | |
longest_suffix = '' | |
ntd = result['error'] | |
else: | |
longest_suffix = result['longest_suffix'] | |
result_by_token_id = result['result_by_token_id'] | |
ntd = {} | |
for token_id, r in result_by_token_id.items(): | |
ntd[f'{r["token"]} ({r["cont_cnt"]} / {result["prompt_cnt"]})'] = r['prob'] | |
return latency, tokenization_info, longest_suffix, ntd | |
def search_docs(index_desc, query, maxnum): | |
result = process('search_docs', index_desc, query=query, maxnum=maxnum) | |
latency = '' if 'latency' not in result else f'{result["latency"]:.3f}' | |
tokenization_info = format_tokenization_info(result) | |
if 'error' in result: | |
message = result['error'] | |
docs = [[] for _ in range(MAXNUM)] | |
else: | |
message = result['message'] | |
docs = result['documents'] | |
docs = [format_doc(doc) for doc in docs] | |
docs = docs[:maxnum] | |
while len(docs) < MAXNUM: | |
docs.append([]) | |
return tuple([latency, tokenization_info, message] + docs) | |
with gr.Blocks() as demo: | |
with gr.Column(): | |
gr.HTML( | |
'''<h1 text-align="center">Infini-gram: An Engine for n-gram / ∞-gram Language Modeling with Trillion-Token Corpora</h1> | |
<p style='font-size: 16px;'>This is an engine that processes n-gram / ∞-gram queries on massive text corpora. Please first select the corpus and the type of query, then enter your query and submit.</p> | |
<p style='font-size: 16px;'>The engine is developed by <a href="https://liujch1998.github.io">Jiacheng (Gary) Liu</a> and documented in our paper: <a href="https://huggingface.co/papers/2401.17377">Infini-gram: Scaling Unbounded n-gram Language Models to a Trillion Tokens</a>. Feel free to check out our <a href="https://infini-gram.io">Project Homepage</a>.</p> | |
<p style='font-size: 16px;'><b>API Endpoint:</b> If you'd like to issue batch queries to infini-gram, you may invoke our API endpoint. Please refer to the <a href="https://infini-gram.io/api_doc">API documentation</a>.</p> | |
<p style='font-size: 16px;'><b>Note:</b> The query is <b>case-sensitive</b>. Your query will be tokenized with the Llama-2 tokenizer (unless otherwise specified).</p> | |
''' | |
) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
index_desc = gr.Radio(choices=INDEX_DESCS, label='Corpus', value=INDEX_DESCS[0]) | |
with gr.Column(scale=7): | |
with gr.Tab('1. Count an n-gram'): | |
with gr.Column(): | |
gr.HTML('<h2>1. Count an n-gram</h2>') | |
gr.HTML('<p style="font-size: 16px;">This counts the number of times an n-gram appears in the corpus. If you submit an empty input, it will return the total number of tokens in the corpus.</p>') | |
gr.HTML('<p style="font-size: 16px;">Example query: <b>natural language processing</b> (the output is Cnt(natural language processing))</p>') | |
with gr.Row(): | |
with gr.Column(scale=1): | |
count_query = gr.Textbox(placeholder='Enter a string (an n-gram) here', label='Query', interactive=True) | |
with gr.Row(): | |
count_clear = gr.ClearButton(value='Clear', variant='secondary', visible=True) | |
count_submit = gr.Button(value='Submit', variant='primary', visible=True) | |
count_latency = gr.Textbox(label='Latency (milliseconds)', interactive=False, lines=1) | |
count_tokenized = gr.Textbox(label='Tokenized', lines=2, interactive=False) | |
with gr.Column(scale=1): | |
count_count = gr.Label(label='Count', num_top_classes=0) | |
count_clear.add([count_query, count_latency, count_tokenized, count_count]) | |
count_submit.click(count, inputs=[index_desc, count_query], outputs=[count_latency, count_tokenized, count_count], api_name=False) | |
with gr.Tab('2. Prob of the last token'): | |
with gr.Column(): | |
gr.HTML('<h2>2. Compute the probability of the last token in an n-gram</h2>') | |
gr.HTML('<p style="font-size: 16px;">This computes the n-gram probability of the last token conditioned on the previous tokens (i.e. (n-1)-gram)).</p>') | |
gr.HTML('<p style="font-size: 16px;">Example query: <b>natural language processing</b> (the output is P(processing | natural language), by counting the appearance of the 3-gram "natural language processing" and the 2-gram "natural language", and take the division between the two)</p>') | |
gr.HTML('<p style="font-size: 16px;">Note: The (n-1)-gram needs to exist in the corpus. If the (n-1)-gram is not found in the corpus, an error message will appear.</p>') | |
with gr.Row(): | |
with gr.Column(scale=1): | |
prob_query = gr.Textbox(placeholder='Enter a string (an n-gram) here', label='Query', interactive=True) | |
with gr.Row(): | |
prob_clear = gr.ClearButton(value='Clear', variant='secondary', visible=True) | |
prob_submit = gr.Button(value='Submit', variant='primary', visible=True) | |
prob_latency = gr.Textbox(label='Latency (milliseconds)', interactive=False, lines=1) | |
prob_tokenized = gr.Textbox(label='Tokenized', lines=2, interactive=False) | |
with gr.Column(scale=1): | |
prob_probability = gr.Label(label='Probability', num_top_classes=0) | |
prob_clear.add([prob_query, prob_latency, prob_tokenized, prob_probability]) | |
prob_submit.click(prob, inputs=[index_desc, prob_query], outputs=[prob_latency, prob_tokenized, prob_probability], api_name=False) | |
with gr.Tab('3. Next-token distribution'): | |
with gr.Column(): | |
gr.HTML('<h2>3. Compute the next-token distribution of an (n-1)-gram</h2>') | |
gr.HTML('<p style="font-size: 16px;">This is an extension of the Query 2: It interprets your input as the (n-1)-gram and gives you the full next-token distribution.</p>') | |
gr.HTML('<p style="font-size: 16px;">Example query: <b>natural language</b> (the output is P(* | natural language), for the top-10 tokens *)</p>') | |
gr.HTML(f'<p style="font-size: 16px;">Note: The (n-1)-gram needs to exist in the corpus. If the (n-1)-gram is not found in the corpus, an error message will appear. If the (n-1)-gram appears more than {MAX_SUPPORT} times in the corpus, the result will be approximate.</p>') | |
with gr.Row(): | |
with gr.Column(scale=1): | |
ntd_query = gr.Textbox(placeholder='Enter a string (an (n-1)-gram) here', label='Query', interactive=True) | |
with gr.Row(): | |
ntd_clear = gr.ClearButton(value='Clear', variant='secondary', visible=True) | |
ntd_submit = gr.Button(value='Submit', variant='primary', visible=True) | |
ntd_latency = gr.Textbox(label='Latency (milliseconds)', interactive=False, lines=1) | |
ntd_tokenized = gr.Textbox(label='Tokenized', lines=2, interactive=False) | |
with gr.Column(scale=1): | |
ntd_distribution = gr.Label(label='Distribution', num_top_classes=10) | |
ntd_clear.add([ntd_query, ntd_latency, ntd_tokenized, ntd_distribution]) | |
ntd_submit.click(ntd, inputs=[index_desc, ntd_query], outputs=[ntd_latency, ntd_tokenized, ntd_distribution], api_name=False) | |
with gr.Tab('4. ∞-gram prob'): | |
with gr.Column(): | |
gr.HTML('<h2>4. Compute the ∞-gram probability of the last token</h2>') | |
gr.HTML('<p style="font-size: 16px;">This computes the ∞-gram probability of the last token conditioned on the previous tokens. Compared to Query 2 (which uses your entire input for n-gram modeling), here we take the longest suffix that we can find in the corpus.</p>') | |
gr.HTML('<p style="font-size: 16px;">Example query: <b>I love natural language processing</b> (the output is P(processing | natural language), because "natural language" appears in the corpus but "love natural language" doesn\'t; in this case the effective n = 3)</p>') | |
gr.HTML('<p style="font-size: 16px;">Note: It may be possible that the effective n = 1, in which case it reduces to the uni-gram probability of the last token.</p>') | |
with gr.Row(): | |
with gr.Column(scale=1): | |
infgram_prob_query = gr.Textbox(placeholder='Enter a string here', label='Query', interactive=True) | |
with gr.Row(): | |
infgram_prob_clear = gr.ClearButton(value='Clear', variant='secondary', visible=True) | |
infgram_prob_submit = gr.Button(value='Submit', variant='primary', visible=True) | |
infgram_prob_latency = gr.Textbox(label='Latency (milliseconds)', interactive=False, lines=1) | |
infgram_prob_tokenized = gr.Textbox(label='Tokenized', lines=2, interactive=False) | |
infgram_prob_longest_suffix = gr.Textbox(label='Longest Found Suffix', interactive=False) | |
with gr.Column(scale=1): | |
infgram_prob_probability = gr.Label(label='Probability', num_top_classes=0) | |
infgram_prob_clear.add([infgram_prob_query, infgram_prob_latency, infgram_prob_tokenized, infgram_prob_longest_suffix, infgram_prob_probability]) | |
infgram_prob_submit.click(infgram_prob, inputs=[index_desc, infgram_prob_query], outputs=[infgram_prob_latency, infgram_prob_tokenized, infgram_prob_longest_suffix, infgram_prob_probability], api_name=False) | |
with gr.Tab('5. ∞-gram next-token distribution'): | |
with gr.Column(): | |
gr.HTML('<h2>5. Compute the ∞-gram next-token distribution</h2>') | |
gr.HTML('<p style="font-size: 16px;">This is similar to Query 3, but with ∞-gram instead of n-gram.</p>') | |
gr.HTML('<p style="font-size: 16px;">Example query: <b>I love natural language</b> (the output is P(* | natural language), for the top-10 tokens *)</p>') | |
with gr.Row(): | |
with gr.Column(scale=1): | |
infgram_ntd_query = gr.Textbox(placeholder='Enter a string here', label='Query', interactive=True) | |
with gr.Row(): | |
infgram_ntd_clear = gr.ClearButton(value='Clear', variant='secondary', visible=True) | |
infgram_ntd_submit = gr.Button(value='Submit', variant='primary', visible=True) | |
infgram_ntd_latency = gr.Textbox(label='Latency (milliseconds)', interactive=False, lines=1) | |
infgram_ntd_tokenized = gr.Textbox(label='Tokenized', lines=2, interactive=False) | |
infgram_ntd_longest_suffix = gr.Textbox(label='Longest Found Suffix', interactive=False) | |
with gr.Column(scale=1): | |
infgram_ntd_distribution = gr.Label(label='Distribution', num_top_classes=10) | |
infgram_ntd_clear.add([infgram_ntd_query, infgram_ntd_latency, infgram_ntd_tokenized, infgram_ntd_longest_suffix, infgram_ntd_distribution]) | |
infgram_ntd_submit.click(infgram_ntd, inputs=[index_desc, infgram_ntd_query], outputs=[infgram_ntd_latency, infgram_ntd_tokenized, infgram_ntd_longest_suffix, infgram_ntd_distribution], api_name=False) | |
with gr.Tab('6. Search documents'): | |
with gr.Column(): | |
gr.HTML(f'''<h2>6. Search for documents containing n-gram(s)</h2> | |
<p style="font-size: 16px;">This displays a few random documents in the corpus that satisfies your query. You can simply enter an n-gram, in which case the document displayed would contain your n-gram. You can also connect multiple n-gram terms with the AND/OR operators, in the <a href="https://en.wikipedia.org/wiki/Conjunctive_normal_form">CNF format</a>, in which case the displayed document contains n-grams such that it satisfies this logical constraint.</p> | |
<p style="font-size: 16px;">Example queries:</p> | |
<ul style="font-size: 16px;"> | |
<li><b>natural language processing</b> (the displayed document would contain "natural language processing")</li> | |
<li><b>natural language processing AND deep learning</b> (the displayed document would contain both "natural language processing" and "deep learning")</li> | |
<li><b>natural language processing OR artificial intelligence AND deep learning OR machine learning</b> (the displayed document would contain at least one of "natural language processing" / "artificial intelligence", and also at least one of "deep learning" / "machine learning")</li> | |
</ul> | |
<p style="font-size: 16px;">If you want another batch of random documents, simply hit the Submit button again :)</p> | |
<p style="font-size: 16px;">A few notes:</p> | |
<ul style="font-size: 16px;"> | |
<li>If the document is too long, it will be truncated to {MAX_DISP_LEN} tokens.</li> | |
<li>The number of found documents may contain duplicates (e.g., if a document contains your query term twice, it may be counted twice).</li> | |
<li>A CNF query may contain up to {MAX_CLAUSES_PER_CNF} clauses, and each clause may contain up to {MAX_TERMS_PER_CLAUSE} terms.</li> | |
<li>When you write a query in CNF, note that <b>OR has higher precedence than AND</b> (which is contrary to conventions in boolean algebra).</li> | |
<li>We can only include documents where all terms (or clauses) are separated by no more than {MAX_DIFF_TOKENS} tokens.</li> | |
<li>If you query for two or more clauses, and a clause has more than {MAX_CLAUSE_FREQ} matches, we will estimate the count from a random subset of all documents containing that clause. This might cause a zero count on conjuction of some simple n-grams (e.g., <b>birds AND oil</b>).</li> | |
</ul> | |
<p style="font-size: 16px;">❗️WARNING: Corpus may contain problematic contents such as PII, toxicity, hate speech, and NSFW text. This tool is merely presenting selected text from the corpus, without any post-hoc safety filtering. It is NOT creating new text. This is a research prototype through which we can expose and examine existing problems with massive text corpora. Please use with caution. Don't be evil :)</p> | |
''') | |
with gr.Row(): | |
with gr.Column(scale=2): | |
search_docs_query = gr.Textbox(placeholder='Enter a query here', label='Query', interactive=True) | |
search_docs_maxnum = gr.Slider(minimum=1, maximum=MAXNUM, value=1, step=1, label='Number of documents to display') | |
with gr.Row(): | |
search_docs_clear = gr.ClearButton(value='Clear', variant='secondary', visible=True) | |
search_docs_submit = gr.Button(value='Submit', variant='primary', visible=True) | |
search_docs_latency = gr.Textbox(label='Latency (milliseconds)', interactive=False, lines=1) | |
search_docs_tokenized = gr.Textbox(label='Tokenized', lines=2, interactive=False) | |
with gr.Column(scale=3): | |
search_docs_message = gr.Label(label='Message', num_top_classes=0) | |
search_docs_outputs = [] | |
for i in range(MAXNUM): | |
with gr.Tab(label=str(i+1)): | |
search_docs_outputs.append(gr.HighlightedText(label='Document', show_legend=False, color_map={"-": "red", "0": "green", "1": "cyan", "2": "blue", "3": "magenta"})) | |
search_docs_clear.add([search_docs_query, search_docs_latency, search_docs_tokenized, search_docs_message] + search_docs_outputs) | |
search_docs_submit.click(search_docs, inputs=[index_desc, search_docs_query, search_docs_maxnum], outputs=[search_docs_latency, search_docs_tokenized, search_docs_message] + search_docs_outputs, api_name=False) | |
with gr.Row(): | |
gr.Markdown(''' | |
If you find this tool useful, please kindly cite our paper: | |
```bibtex | |
@article{Liu2024InfiniGram, | |
title={Infini-gram: Scaling Unbounded n-gram Language Models to a Trillion Tokens}, | |
author={Liu, Jiacheng and Min, Sewon and Zettlemoyer, Luke and Choi, Yejin and Hajishirzi, Hannaneh}, | |
journal={arXiv preprint arXiv:2401.17377}, | |
year={2024} | |
} | |
``` | |
''') | |
demo.queue( | |
default_concurrency_limit=DEFAULT_CONCURRENCY_LIMIT, | |
max_size=MAX_SIZE, | |
api_open=False, | |
).launch( | |
max_threads=MAX_THREADS, | |
debug=DEBUG, | |
show_api=False, | |
) | |