import os ## # 获取全部环境变量 env_vars = os.environ os.environ["PYTORCH_NVML_BASED_CUDA_CHECK"] = 0 import torch if torch.cuda.is_available(): print("CUDA is available. Listing available GPUs:") # 获取并打印GPU数量 num_gpus = torch.cuda.device_count() for i in range(num_gpus): print(f"GPU {i}: {torch.cuda.get_device_name(i)}") # 其他相关信息,例如内存 print(f" Memory Allocated: {torch.cuda.memory_allocated(i) / 1024 ** 2:.0f} MB") print(f" Memory Reserved: {torch.cuda.memory_reserved(i) / 1024 ** 2:.0f} MB") else: print("CUDA is not available.") # 遍历并打印环境变量 for key, value in env_vars.items(): print(f"{key}: {value}") ## import subprocess # 运行nvidia-smi result = subprocess.run( ['nvidia-smi'], text=True ) import spaces from threading import Thread from typing import Iterator import gradio as gr import torch from modelscope import AutoModelForCausalLM, AutoTokenizer from transformers import TextIteratorStreamer MAX_MAX_NEW_TOKENS = 2048 DEFAULT_MAX_NEW_TOKENS = 1024 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) ## # 检查CUDA是否可用 def print_gpu(): result = subprocess.run( ['nvidia-smi'], text=True ) if torch.cuda.is_available(): print("CUDA is available. Listing available GPUs:") # 获取并打印GPU数量 num_gpus = torch.cuda.device_count() for i in range(num_gpus): print(f"GPU {i}: {torch.cuda.get_device_name(i)}") # 其他相关信息,例如内存 print(f" Memory Allocated: {torch.cuda.memory_allocated(i) / 1024 ** 2:.0f} MB") print(f" Memory Reserved: {torch.cuda.memory_reserved(i) / 1024 ** 2:.0f} MB") else: print("CUDA is not available.") ## os.environ['CUDA_VISIBLE_DEVICES'] = '-1' print_gpu() os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2,3,4,5,6,7,8' print_gpu() os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2,3,4,5,6,7,8,9,10,11,12,13,14' print_gpu() if not torch.cuda.is_available(): DESCRIPTION += "\n

Running on CPU 🥶 This demo does not work on CPU.

" if torch.cuda.is_available(): model_id = "qwen/Qwen1.5-1.8B-Chat" model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto") tokenizer = AutoTokenizer.from_pretrained(model_id) tokenizer.use_default_system_prompt = False @spaces.GPU def generate( message: str, chat_history: list[tuple[str, str]], system_prompt: str, max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2, ) -> Iterator[str]: print_gpu() conversation = [] if system_prompt: conversation.append({"role": "system", "content": system_prompt}) for user, assistant in chat_history: conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) conversation.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template(conversation, tokenize=False,add_generation_prompt=True) input_ids = tokenizer([input_ids],return_tensors="pt").to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( input_ids=input_ids.input_ids, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, top_k=top_k, temperature=temperature, repetition_penalty=repetition_penalty, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() #dictionary update sequence element #0 has length 19; 2 is required outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) #outputs = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] print(outputs) #yield outputs chat_interface = gr.ChatInterface( fn=generate, additional_inputs=[ gr.Textbox(label="System prompt", lines=6), gr.Slider( label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS, ), gr.Slider( label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6, ), gr.Slider( label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9, ), gr.Slider( label="Top-k", minimum=1, maximum=1000, step=1, value=50, ), gr.Slider( label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2, ), ], stop_btn=None, examples=[ ["你好!你是谁?"], ["请简单介绍一下大语言模型?"], ["请讲一个小人物成功的故事."], ["浙江的省会在哪里?"], ["写一篇100字的文章,题目是'人工智能开源的优势'"], ], ) with gr.Blocks(css="style.css") as demo: gr.Markdown("""

""") gr.Markdown("""

Qwen1.5-1.8B-Chat Bot👾
""") gr.Markdown("""
通义千问1.5-1.8B(Qwen1.5-1.8B) 是阿里云研发的通义千问大模型系列的70亿参数规模的模型。
""") chat_interface.render() if __name__ == "__main__": demo.queue(max_size=20).launch()