litagin's picture
Change to use anime-whisper
eefa888
raw
history blame
5.81 kB
import os
import time
import warnings
from pathlib import Path
import gradio as gr
import librosa
import spaces
import torch
from loguru import logger
from transformers import pipeline
warnings.filterwarnings("ignore")
is_hf = os.getenv("SYSTEM") == "spaces"
generate_kwargs = {
"language": "Japanese",
"do_sample": False,
"num_beams": 1,
"no_repeat_ngram_size": 0,
"max_new_tokens": 64,
}
model_dict = {
"whisper-large-v2": "openai/whisper-large-v2",
"whisper-large-v3": "openai/whisper-large-v3",
"whisper-large-v3-turbo": "openai/whisper-large-v3-turbo",
"kotoba-whisper-v1.0": "kotoba-tech/kotoba-whisper-v1.0",
"kotoba-whisper-v2.0": "kotoba-tech/kotoba-whisper-v2.0",
"anime-whisper": "litagin/anime-whisper",
}
logger.info("Initializing pipelines...")
pipe_dict = {
k: pipeline(
"automatic-speech-recognition",
model=v,
device="cuda" if torch.cuda.is_available() else "cpu",
)
for k, v in model_dict.items()
}
logger.success("Pipelines initialized!")
@spaces.GPU
def transcribe_common(audio: str, model: str) -> tuple[str, float]:
if not audio:
return "No audio file", 0
filename = Path(audio).name
logger.info(f"Model: {model}")
logger.info(f"Audio: {filename}")
# Read and resample audio to 16kHz
y, sr = librosa.load(audio, mono=True, sr=16000)
# Get duration of audio
duration = librosa.get_duration(y=y, sr=sr)
logger.info(f"Duration: {duration:.2f}s")
if duration > 15:
logger.error(f"Audio too long, limit is 15 seconds, got {duration:.2f}s")
return f"Audio too long, limit is 15 seconds, got {duration:.2f}s", 0
start_time = time.time()
result = pipe_dict[model](y, generate_kwargs=generate_kwargs)["text"]
end_time = time.time()
logger.success(f"Finished in {end_time - start_time:.2f}s\n{result}")
return result, end_time - start_time
def transcribe_large_v2(audio) -> tuple[str, float]:
return transcribe_common(audio, "whisper-large-v2")
def transcribe_large_v3(audio) -> tuple[str, float]:
return transcribe_common(audio, "whisper-large-v3")
def transcribe_large_v3_turbo(audio) -> tuple[str, float]:
return transcribe_common(audio, "whisper-large-v3-turbo")
def transcribe_kotoba_v1(audio) -> tuple[str, float]:
return transcribe_common(audio, "kotoba-whisper-v1.0")
def transcribe_kotoba_v2(audio) -> tuple[str, float]:
return transcribe_common(audio, "kotoba-whisper-v2.0")
def transcribe_anime_whisper(audio) -> tuple[str, float]:
return transcribe_common(audio, "anime-whisper")
initial_md = """
# Anime-Whisper Demo
- 音声認識モデル [kotoba-whisper-v2.0](https://huggingface.co/kotoba-tech/kotoba-whisper-v2.0) をファインチューンしたモデルのお試し
- https://huggingface.co/litagin/anime-whisper
- デモでは**音声は15秒まで**しか受け付けません
- 日本語のみ対応 (Japanese only)
- 現在0.1エポックくらい
- 比較できるように他モデルもついでに試せる
pipeに渡しているkwargsは以下の最低限のもの:
```python
generate_kwargs = {
"language": "Japanese",
"do_sample": False,
"num_beams": 1,
"no_repeat_ngram_size": 0,
"max_new_tokens": 64,
}
```
"""
with gr.Blocks() as app:
gr.Markdown(initial_md)
audio = gr.Audio(type="filepath")
with gr.Row():
with gr.Column():
gr.Markdown("### Anime-Whisper")
button_galgame = gr.Button("Transcribe with Anime-Whisper")
time_galgame = gr.Textbox(label="Time taken")
output_galgame = gr.Textbox(label="Result")
with gr.Row():
with gr.Column():
gr.Markdown("### Whisper-Large-V2")
button_v2 = gr.Button("Transcribe with Whisper-Large-V2")
time_v2 = gr.Textbox(label="Time taken")
output_v2 = gr.Textbox(label="Result")
with gr.Column():
gr.Markdown("### Whisper-Large-V3")
button_v3 = gr.Button("Transcribe with Whisper-Large-V3")
time_v3 = gr.Textbox(label="Time taken")
output_v3 = gr.Textbox(label="Result")
with gr.Column():
gr.Markdown("### Whisper-Large-V3-Turbo")
button_v3_turbo = gr.Button("Transcribe with Whisper-Large-V3-Turbo")
time_v3_turbo = gr.Textbox(label="Time taken")
output_v3_turbo = gr.Textbox(label="Result")
with gr.Row():
with gr.Column():
gr.Markdown("### Kotoba-Whisper-V1.0")
button_kotoba_v1 = gr.Button("Transcribe with Kotoba-Whisper-V1.0")
time_kotoba_v1 = gr.Textbox(label="Time taken")
output_kotoba_v1 = gr.Textbox(label="Result")
with gr.Column():
gr.Markdown("### Kotoba-Whisper-V2.0")
button_kotoba_v2 = gr.Button("Transcribe with Kotoba-Whisper-V2.0")
time_kotoba_v2 = gr.Textbox(label="Time taken")
output_kotoba_v2 = gr.Textbox(label="Result")
button_v2.click(transcribe_large_v2, inputs=audio, outputs=[output_v2, time_v2])
button_v3.click(transcribe_large_v3, inputs=audio, outputs=[output_v3, time_v3])
button_v3_turbo.click(
transcribe_large_v3_turbo,
inputs=audio,
outputs=[output_v3_turbo, time_v3_turbo],
)
button_kotoba_v1.click(
transcribe_kotoba_v1, inputs=audio, outputs=[output_kotoba_v1, time_kotoba_v1]
)
button_kotoba_v2.click(
transcribe_kotoba_v2, inputs=audio, outputs=[output_kotoba_v2, time_kotoba_v2]
)
button_galgame.click(
transcribe_anime_whisper,
inputs=audio,
outputs=[output_galgame, time_galgame],
)
# app.load(warmup, inputs=[], outputs=[warmup_result], queue=True)
app.launch(inbrowser=True)