import gradio as gr import spaces from gradio_litmodel3d import LitModel3D import os import shutil os.environ['SPCONV_ALGO'] = 'native' from typing import * import torch import numpy as np import imageio from easydict import EasyDict as edict from PIL import Image from trellis.pipelines import TrellisImageTo3DPipeline from trellis.representations import Gaussian, MeshExtractResult from trellis.utils import render_utils, postprocessing_utils import os import random import torch import torchvision.transforms.functional as TF from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL from diffusers import DDIMScheduler, EulerAncestralDiscreteScheduler from controlnet_aux import PidiNetDetector, HEDdetector from diffusers.utils import load_image from huggingface_hub import HfApi from pathlib import Path from PIL import Image, ImageOps import torch import numpy as np import cv2 import os import random js_func = """ function refresh() { const url = new URL(window.location); if (url.searchParams.get('__theme') !== 'dark') { url.searchParams.set('__theme', 'dark'); window.location.href = url.href; } } """ MAX_SEED = np.iinfo(np.int32).max TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp') os.makedirs(TMP_DIR, exist_ok=True) def start_session(req: gr.Request): user_dir = os.path.join(TMP_DIR, str(req.session_hash)) os.makedirs(user_dir, exist_ok=True) def end_session(req: gr.Request): user_dir = os.path.join(TMP_DIR, str(req.session_hash)) shutil.rmtree(user_dir) def preprocess_image(image: Image.Image, prompt: str, negative_prompt: str = "", num_steps: int = 25, guidance_scale: float = 5, controlnet_conditioning_scale: float = 1.0,) -> Image.Image: """ Preprocess the input image. Args: image (Image.Image): The input image. Returns: Image.Image: The preprocessed image. """ if prompt is not None: width, height = image['composite'].size ratio = np.sqrt(1024. * 1024. / (width * height)) new_width, new_height = int(width * ratio), int(height * ratio) image = image['composite'].resize((new_width, new_height)) image = pipe( prompt=prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=num_steps, controlnet_conditioning_scale=controlnet_conditioning_scale, guidance_scale=guidance_scale, width=new_width, height=new_height).images[0] print(type(image)) processed_image = pipeline.preprocess_image(image) return processed_image def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]: """ Preprocess a list of input images. Args: images (List[Tuple[Image.Image, str]]): The input images. Returns: List[Image.Image]: The preprocessed images. """ images = [image[0] for image in images] processed_images = [pipeline.preprocess_image(image) for image in images] return processed_images def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict: return { 'gaussian': { **gs.init_params, '_xyz': gs._xyz.cpu().numpy(), '_features_dc': gs._features_dc.cpu().numpy(), '_scaling': gs._scaling.cpu().numpy(), '_rotation': gs._rotation.cpu().numpy(), '_opacity': gs._opacity.cpu().numpy(), }, 'mesh': { 'vertices': mesh.vertices.cpu().numpy(), 'faces': mesh.faces.cpu().numpy(), }, } def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]: gs = Gaussian( aabb=state['gaussian']['aabb'], sh_degree=state['gaussian']['sh_degree'], mininum_kernel_size=state['gaussian']['mininum_kernel_size'], scaling_bias=state['gaussian']['scaling_bias'], opacity_bias=state['gaussian']['opacity_bias'], scaling_activation=state['gaussian']['scaling_activation'], ) gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda') gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda') gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda') gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda') gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda') mesh = edict( vertices=torch.tensor(state['mesh']['vertices'], device='cuda'), faces=torch.tensor(state['mesh']['faces'], device='cuda'), ) return gs, mesh def get_seed(randomize_seed: bool, seed: int) -> int: """ Get the random seed. """ return np.random.randint(0, MAX_SEED) if randomize_seed else seed @spaces.GPU def image_to_3d( image: Image.Image, multiimages: List[Tuple[Image.Image, str]], is_multiimage: bool, seed: int, ss_guidance_strength: float, ss_sampling_steps: int, slat_guidance_strength: float, slat_sampling_steps: int, multiimage_algo: Literal["multidiffusion", "stochastic"], req: gr.Request, ) -> Tuple[dict, str]: """ Convert an image to a 3D model. Args: image (Image.Image): The input image. multiimages (List[Tuple[Image.Image, str]]): The input images in multi-image mode. is_multiimage (bool): Whether is in multi-image mode. seed (int): The random seed. ss_guidance_strength (float): The guidance strength for sparse structure generation. ss_sampling_steps (int): The number of sampling steps for sparse structure generation. slat_guidance_strength (float): The guidance strength for structured latent generation. slat_sampling_steps (int): The number of sampling steps for structured latent generation. multiimage_algo (Literal["multidiffusion", "stochastic"]): The algorithm for multi-image generation. Returns: dict: The information of the generated 3D model. str: The path to the video of the 3D model. """ user_dir = os.path.join(TMP_DIR, str(req.session_hash)) if not is_multiimage: outputs = pipeline.run( image, seed=seed, formats=["gaussian", "mesh"], preprocess_image=False, sparse_structure_sampler_params={ "steps": ss_sampling_steps, "cfg_strength": ss_guidance_strength, }, slat_sampler_params={ "steps": slat_sampling_steps, "cfg_strength": slat_guidance_strength, }, ) else: outputs = pipeline.run_multi_image( [image[0] for image in multiimages], seed=seed, formats=["gaussian", "mesh"], preprocess_image=False, sparse_structure_sampler_params={ "steps": ss_sampling_steps, "cfg_strength": ss_guidance_strength, }, slat_sampler_params={ "steps": slat_sampling_steps, "cfg_strength": slat_guidance_strength, }, mode=multiimage_algo, ) video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color'] video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal'] video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))] video_path = os.path.join(user_dir, 'sample.mp4') imageio.mimsave(video_path, video, fps=15) state = pack_state(outputs['gaussian'][0], outputs['mesh'][0]) torch.cuda.empty_cache() return state, video_path @spaces.GPU(duration=90) def extract_glb( state: dict, mesh_simplify: float, texture_size: int, req: gr.Request, ) -> Tuple[str, str]: """ Extract a GLB file from the 3D model. Args: state (dict): The state of the generated 3D model. mesh_simplify (float): The mesh simplification factor. texture_size (int): The texture resolution. Returns: str: The path to the extracted GLB file. """ user_dir = os.path.join(TMP_DIR, str(req.session_hash)) gs, mesh = unpack_state(state) glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False) glb_path = os.path.join(user_dir, 'sample.glb') glb.export(glb_path) torch.cuda.empty_cache() return glb_path, glb_path @spaces.GPU def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]: """ Extract a Gaussian file from the 3D model. Args: state (dict): The state of the generated 3D model. Returns: str: The path to the extracted Gaussian file. """ user_dir = os.path.join(TMP_DIR, str(req.session_hash)) gs, _ = unpack_state(state) gaussian_path = os.path.join(user_dir, 'sample.ply') gs.save_ply(gaussian_path) torch.cuda.empty_cache() return gaussian_path, gaussian_path def prepare_multi_example() -> List[Image.Image]: multi_case = list(set([i.split('_')[0] for i in os.listdir("assets/example_multi_image")])) images = [] for case in multi_case: _images = [] for i in range(1, 4): img = Image.open(f'assets/example_multi_image/{case}_{i}.png') W, H = img.size img = img.resize((int(W / H * 512), 512)) _images.append(np.array(img)) images.append(Image.fromarray(np.concatenate(_images, axis=1))) return images def split_image(image: Image.Image) -> List[Image.Image]: """ Split an image into multiple views. """ image = np.array(image) alpha = image[..., 3] alpha = np.any(alpha>0, axis=0) start_pos = np.where(~alpha[:-1] & alpha[1:])[0].tolist() end_pos = np.where(alpha[:-1] & ~alpha[1:])[0].tolist() images = [] for s, e in zip(start_pos, end_pos): images.append(Image.fromarray(image[:, s:e+1])) return [preprocess_image(image) for image in images] with gr.Blocks(delete_cache=(600, 600), js=js_func) as demo: gr.Markdown(""" ## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/) * Upload an image and click "Generate" to create a 3D asset. If the image has alpha channel, it be used as the mask. Otherwise, we use `rembg` to remove the background. * If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it. ✨New: 1) Experimental multi-image support. 2) Gaussian file extraction. """) with gr.Row(): with gr.Column(): with gr.Tabs() as input_tabs: with gr.Tab(label="Single Image", id=0) as single_image_input_tab: #image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=300) image_prompt = image = gr.ImageEditor(type="pil", image_mode="L", crop_size=(512, 512)) with gr.Row(): prompt = gr.Textbox(label="Prompt") #negative_prompt = gr.Textbox(label="Negative prompt") with gr.Tab(label="Multiple Images", id=1) as multiimage_input_tab: multiimage_prompt = gr.Gallery(label="Image Prompt", format="png", type="pil", height=300, columns=3) gr.Markdown(""" Input different views of the object in separate images. *NOTE: this is an experimental algorithm without training a specialized model. It may not produce the best results for all images, especially those having different poses or inconsistent details.* """) with gr.Accordion(label="Generation Settings", open=False): seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1) randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) gr.Markdown("Stage 1: Sparse Structure Generation") with gr.Row(): ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1) ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1) gr.Markdown("Stage 2: Structured Latent Generation") with gr.Row(): slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1) slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1) multiimage_algo = gr.Radio(["stochastic", "multidiffusion"], label="Multi-image Algorithm", value="stochastic") generate_btn = gr.Button("Generate") with gr.Accordion(label="GLB Extraction Settings", open=False): mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01) texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512) with gr.Row(): extract_glb_btn = gr.Button("Extract GLB", interactive=False) extract_gs_btn = gr.Button("Extract Gaussian", interactive=False) gr.Markdown(""" *NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.* """) with gr.Column(): video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300) model_output = LitModel3D(label="Extracted GLB/Gaussian", exposure=10.0, height=300) with gr.Row(): download_glb = gr.DownloadButton(label="Download GLB", interactive=False) download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False) is_multiimage = gr.State(False) output_buf = gr.State() # Example images at the bottom of the page with gr.Row() as single_image_example: examples = gr.Examples( examples=[ f'assets/example_image/{image}' for image in os.listdir("assets/example_image") ], inputs=[image_prompt], fn=preprocess_image, outputs=[image_prompt], run_on_click=True, examples_per_page=64, ) with gr.Row(visible=False) as multiimage_example: examples_multi = gr.Examples( examples=prepare_multi_example(), inputs=[image_prompt], fn=split_image, outputs=[multiimage_prompt], run_on_click=True, examples_per_page=8, ) # Handlers demo.load(start_session) demo.unload(end_session) single_image_input_tab.select( lambda: tuple([False, gr.Row.update(visible=True), gr.Row.update(visible=False)]), outputs=[is_multiimage, single_image_example, multiimage_example] ) multiimage_input_tab.select( lambda: tuple([True, gr.Row.update(visible=False), gr.Row.update(visible=True)]), outputs=[is_multiimage, single_image_example, multiimage_example] ) image_prompt.upload( preprocess_image, inputs=[image_prompt, prompt], outputs=[image_prompt], ) multiimage_prompt.upload( preprocess_images, inputs=[multiimage_prompt], outputs=[multiimage_prompt], ) generate_btn.click( get_seed, inputs=[randomize_seed, seed], outputs=[seed], ).then( preprocess_image, inputs=[image_prompt, prompt], outputs=[image_prompt], ).then( image_to_3d, inputs=[image_prompt, multiimage_prompt, is_multiimage, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, multiimage_algo], outputs=[output_buf, video_output], ).then( lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]), outputs=[extract_glb_btn, extract_gs_btn], ) video_output.clear( lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]), outputs=[extract_glb_btn, extract_gs_btn], ) extract_glb_btn.click( extract_glb, inputs=[output_buf, mesh_simplify, texture_size], outputs=[model_output, download_glb], ).then( lambda: gr.Button(interactive=True), outputs=[download_glb], ) extract_gs_btn.click( extract_gaussian, inputs=[output_buf], outputs=[model_output, download_gs], ).then( lambda: gr.Button(interactive=True), outputs=[download_gs], ) model_output.clear( lambda: gr.Button(interactive=False), outputs=[download_glb], ) # Launch the Gradio app if __name__ == "__main__": pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large") pipeline.cuda() #scribble controlnet controlnet = ControlNetModel.from_pretrained( "xinsir/controlnet-scribble-sdxl-1.0", torch_dtype=torch.float16 ) vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) pipe_control = StableDiffusionXLControlNetPipeline.from_pretrained( "sd-community/sdxl-flash", controlnet=controlnet, vae=vae, torch_dtype=torch.float16, # scheduler=eulera_scheduler, ) pipe_control.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe_control.scheduler.config) pipe_control.cuda() # try: # pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg # except: # pass demo.launch()