Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
from gradio_litmodel3d import LitModel3D | |
import os | |
import shutil | |
os.environ['SPCONV_ALGO'] = 'native' | |
from typing import * | |
import torch | |
import numpy as np | |
import imageio | |
from easydict import EasyDict as edict | |
from PIL import Image | |
from trellis.pipelines import TrellisImageTo3DPipeline | |
from trellis.representations import Gaussian, MeshExtractResult | |
from trellis.utils import render_utils, postprocessing_utils | |
import os | |
import random | |
import torch | |
import torchvision.transforms.functional as TF | |
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL | |
from diffusers import DDIMScheduler, EulerAncestralDiscreteScheduler | |
from controlnet_aux import PidiNetDetector, HEDdetector | |
from diffusers.utils import load_image | |
from huggingface_hub import HfApi | |
from pathlib import Path | |
from PIL import Image, ImageOps | |
import torch | |
import numpy as np | |
import cv2 | |
import os | |
import random | |
js_func = """ | |
function refresh() { | |
const url = new URL(window.location); | |
if (url.searchParams.get('__theme') !== 'dark') { | |
url.searchParams.set('__theme', 'dark'); | |
window.location.href = url.href; | |
} | |
} | |
""" | |
MAX_SEED = np.iinfo(np.int32).max | |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp') | |
os.makedirs(TMP_DIR, exist_ok=True) | |
controlnet = ControlNetModel.from_pretrained( | |
"xinsir/controlnet-scribble-sdxl-1.0", | |
torch_dtype=torch.float16 | |
) | |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) | |
pipe = StableDiffusionXLControlNetPipeline.from_pretrained( | |
"sd-community/sdxl-flash", | |
controlnet=controlnet, | |
vae=vae, | |
torch_dtype=torch.float16, | |
# scheduler=eulera_scheduler, | |
) | |
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) | |
pipe.to('cuda') | |
def start_session(req: gr.Request): | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
os.makedirs(user_dir, exist_ok=True) | |
def end_session(req: gr.Request): | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
shutil.rmtree(user_dir) | |
def preprocess_image(image: Image.Image, | |
prompt: str, | |
negative_prompt: str = "", | |
num_steps: int = 25, | |
guidance_scale: float = 5, | |
controlnet_conditioning_scale: float = 1.0,) -> Image.Image: | |
""" | |
Preprocess the input image. | |
Args: | |
image (Image.Image): The input image. | |
Returns: | |
Image.Image: The preprocessed image. | |
""" | |
width, height = image['composite'].size | |
ratio = np.sqrt(1024. * 1024. / (width * height)) | |
new_width, new_height = int(width * ratio), int(height * ratio) | |
image = image['composite'].resize((new_width, new_height)) | |
image = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
image=image, | |
num_inference_steps=num_steps, | |
controlnet_conditioning_scale=controlnet_conditioning_scale, | |
guidance_scale=guidance_scale, | |
width=new_width, | |
height=new_height,).images[0] | |
processed_image = pipeline.preprocess_image(image) | |
return processed_image | |
def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]: | |
""" | |
Preprocess a list of input images. | |
Args: | |
images (List[Tuple[Image.Image, str]]): The input images. | |
Returns: | |
List[Image.Image]: The preprocessed images. | |
""" | |
images = [image[0] for image in images] | |
processed_images = [pipeline.preprocess_image(image) for image in images] | |
return processed_images | |
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict: | |
return { | |
'gaussian': { | |
**gs.init_params, | |
'_xyz': gs._xyz.cpu().numpy(), | |
'_features_dc': gs._features_dc.cpu().numpy(), | |
'_scaling': gs._scaling.cpu().numpy(), | |
'_rotation': gs._rotation.cpu().numpy(), | |
'_opacity': gs._opacity.cpu().numpy(), | |
}, | |
'mesh': { | |
'vertices': mesh.vertices.cpu().numpy(), | |
'faces': mesh.faces.cpu().numpy(), | |
}, | |
} | |
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]: | |
gs = Gaussian( | |
aabb=state['gaussian']['aabb'], | |
sh_degree=state['gaussian']['sh_degree'], | |
mininum_kernel_size=state['gaussian']['mininum_kernel_size'], | |
scaling_bias=state['gaussian']['scaling_bias'], | |
opacity_bias=state['gaussian']['opacity_bias'], | |
scaling_activation=state['gaussian']['scaling_activation'], | |
) | |
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda') | |
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda') | |
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda') | |
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda') | |
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda') | |
mesh = edict( | |
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'), | |
faces=torch.tensor(state['mesh']['faces'], device='cuda'), | |
) | |
return gs, mesh | |
def get_seed(randomize_seed: bool, seed: int) -> int: | |
""" | |
Get the random seed. | |
""" | |
return np.random.randint(0, MAX_SEED) if randomize_seed else seed | |
def image_to_3d( | |
image: Image.Image, | |
multiimages: List[Tuple[Image.Image, str]], | |
is_multiimage: bool, | |
seed: int, | |
ss_guidance_strength: float, | |
ss_sampling_steps: int, | |
slat_guidance_strength: float, | |
slat_sampling_steps: int, | |
multiimage_algo: Literal["multidiffusion", "stochastic"], | |
req: gr.Request, | |
) -> Tuple[dict, str]: | |
""" | |
Convert an image to a 3D model. | |
Args: | |
image (Image.Image): The input image. | |
multiimages (List[Tuple[Image.Image, str]]): The input images in multi-image mode. | |
is_multiimage (bool): Whether is in multi-image mode. | |
seed (int): The random seed. | |
ss_guidance_strength (float): The guidance strength for sparse structure generation. | |
ss_sampling_steps (int): The number of sampling steps for sparse structure generation. | |
slat_guidance_strength (float): The guidance strength for structured latent generation. | |
slat_sampling_steps (int): The number of sampling steps for structured latent generation. | |
multiimage_algo (Literal["multidiffusion", "stochastic"]): The algorithm for multi-image generation. | |
Returns: | |
dict: The information of the generated 3D model. | |
str: The path to the video of the 3D model. | |
""" | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
if not is_multiimage: | |
outputs = pipeline.run( | |
image, | |
seed=seed, | |
formats=["gaussian", "mesh"], | |
preprocess_image=False, | |
sparse_structure_sampler_params={ | |
"steps": ss_sampling_steps, | |
"cfg_strength": ss_guidance_strength, | |
}, | |
slat_sampler_params={ | |
"steps": slat_sampling_steps, | |
"cfg_strength": slat_guidance_strength, | |
}, | |
) | |
else: | |
outputs = pipeline.run_multi_image( | |
[image[0] for image in multiimages], | |
seed=seed, | |
formats=["gaussian", "mesh"], | |
preprocess_image=False, | |
sparse_structure_sampler_params={ | |
"steps": ss_sampling_steps, | |
"cfg_strength": ss_guidance_strength, | |
}, | |
slat_sampler_params={ | |
"steps": slat_sampling_steps, | |
"cfg_strength": slat_guidance_strength, | |
}, | |
mode=multiimage_algo, | |
) | |
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color'] | |
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal'] | |
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))] | |
video_path = os.path.join(user_dir, 'sample.mp4') | |
imageio.mimsave(video_path, video, fps=15) | |
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0]) | |
torch.cuda.empty_cache() | |
return state, video_path | |
def extract_glb( | |
state: dict, | |
mesh_simplify: float, | |
texture_size: int, | |
req: gr.Request, | |
) -> Tuple[str, str]: | |
""" | |
Extract a GLB file from the 3D model. | |
Args: | |
state (dict): The state of the generated 3D model. | |
mesh_simplify (float): The mesh simplification factor. | |
texture_size (int): The texture resolution. | |
Returns: | |
str: The path to the extracted GLB file. | |
""" | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
gs, mesh = unpack_state(state) | |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False) | |
glb_path = os.path.join(user_dir, 'sample.glb') | |
glb.export(glb_path) | |
torch.cuda.empty_cache() | |
return glb_path, glb_path | |
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]: | |
""" | |
Extract a Gaussian file from the 3D model. | |
Args: | |
state (dict): The state of the generated 3D model. | |
Returns: | |
str: The path to the extracted Gaussian file. | |
""" | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
gs, _ = unpack_state(state) | |
gaussian_path = os.path.join(user_dir, 'sample.ply') | |
gs.save_ply(gaussian_path) | |
torch.cuda.empty_cache() | |
return gaussian_path, gaussian_path | |
def prepare_multi_example() -> List[Image.Image]: | |
multi_case = list(set([i.split('_')[0] for i in os.listdir("assets/example_multi_image")])) | |
images = [] | |
for case in multi_case: | |
_images = [] | |
for i in range(1, 4): | |
img = Image.open(f'assets/example_multi_image/{case}_{i}.png') | |
W, H = img.size | |
img = img.resize((int(W / H * 512), 512)) | |
_images.append(np.array(img)) | |
images.append(Image.fromarray(np.concatenate(_images, axis=1))) | |
return images | |
def split_image(image: Image.Image) -> List[Image.Image]: | |
""" | |
Split an image into multiple views. | |
""" | |
image = np.array(image) | |
alpha = image[..., 3] | |
alpha = np.any(alpha>0, axis=0) | |
start_pos = np.where(~alpha[:-1] & alpha[1:])[0].tolist() | |
end_pos = np.where(alpha[:-1] & ~alpha[1:])[0].tolist() | |
images = [] | |
for s, e in zip(start_pos, end_pos): | |
images.append(Image.fromarray(image[:, s:e+1])) | |
return [preprocess_image(image) for image in images] | |
with gr.Blocks(delete_cache=(600, 600), js=js_func) as demo: | |
gr.Markdown(""" | |
## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/) | |
* Upload an image and click "Generate" to create a 3D asset. If the image has alpha channel, it be used as the mask. Otherwise, we use `rembg` to remove the background. | |
* If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it. | |
✨New: 1) Experimental multi-image support. 2) Gaussian file extraction. | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Tabs() as input_tabs: | |
with gr.Tab(label="Single Image", id=0) as single_image_input_tab: | |
#image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=300) | |
image_prompt = image = gr.ImageEditor(type="pil", image_mode="L", crop_size=(512, 512)) | |
with gr.Row(): | |
prompt = gr.Textbox(label="Prompt") | |
#negative_prompt = gr.Textbox(label="Negative prompt") | |
with gr.Tab(label="Multiple Images", id=1) as multiimage_input_tab: | |
multiimage_prompt = gr.Gallery(label="Image Prompt", format="png", type="pil", height=300, columns=3) | |
gr.Markdown(""" | |
Input different views of the object in separate images. | |
*NOTE: this is an experimental algorithm without training a specialized model. It may not produce the best results for all images, especially those having different poses or inconsistent details.* | |
""") | |
with gr.Accordion(label="Generation Settings", open=False): | |
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1) | |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) | |
gr.Markdown("Stage 1: Sparse Structure Generation") | |
with gr.Row(): | |
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1) | |
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1) | |
gr.Markdown("Stage 2: Structured Latent Generation") | |
with gr.Row(): | |
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1) | |
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1) | |
multiimage_algo = gr.Radio(["stochastic", "multidiffusion"], label="Multi-image Algorithm", value="stochastic") | |
generate_btn = gr.Button("Generate") | |
with gr.Accordion(label="GLB Extraction Settings", open=False): | |
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01) | |
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512) | |
with gr.Row(): | |
extract_glb_btn = gr.Button("Extract GLB", interactive=False) | |
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False) | |
gr.Markdown(""" | |
*NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.* | |
""") | |
with gr.Column(): | |
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300) | |
model_output = LitModel3D(label="Extracted GLB/Gaussian", exposure=10.0, height=300) | |
with gr.Row(): | |
download_glb = gr.DownloadButton(label="Download GLB", interactive=False) | |
download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False) | |
is_multiimage = gr.State(False) | |
output_buf = gr.State() | |
# Example images at the bottom of the page | |
with gr.Row() as single_image_example: | |
examples = gr.Examples( | |
examples=[ | |
f'assets/example_image/{image}' | |
for image in os.listdir("assets/example_image") | |
], | |
inputs=[image_prompt], | |
fn=preprocess_image, | |
outputs=[image_prompt], | |
run_on_click=True, | |
examples_per_page=64, | |
) | |
with gr.Row(visible=False) as multiimage_example: | |
examples_multi = gr.Examples( | |
examples=prepare_multi_example(), | |
inputs=[image_prompt], | |
fn=split_image, | |
outputs=[multiimage_prompt], | |
run_on_click=True, | |
examples_per_page=8, | |
) | |
# Handlers | |
demo.load(start_session) | |
demo.unload(end_session) | |
single_image_input_tab.select( | |
lambda: tuple([False, gr.Row.update(visible=True), gr.Row.update(visible=False)]), | |
outputs=[is_multiimage, single_image_example, multiimage_example] | |
) | |
multiimage_input_tab.select( | |
lambda: tuple([True, gr.Row.update(visible=False), gr.Row.update(visible=True)]), | |
outputs=[is_multiimage, single_image_example, multiimage_example] | |
) | |
image_prompt.upload( | |
preprocess_image, | |
inputs=[image_prompt, prompt], | |
outputs=[image_prompt], | |
) | |
multiimage_prompt.upload( | |
preprocess_images, | |
inputs=[multiimage_prompt], | |
outputs=[multiimage_prompt], | |
) | |
generate_btn.click( | |
get_seed, | |
inputs=[randomize_seed, seed], | |
outputs=[seed], | |
).then( | |
preprocess_image, | |
inputs=[image_prompt, prompt], | |
outputs=[image_prompt], | |
).then( | |
image_to_3d, | |
inputs=[image_prompt, multiimage_prompt, is_multiimage, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, multiimage_algo], | |
outputs=[output_buf, video_output], | |
).then( | |
lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]), | |
outputs=[extract_glb_btn, extract_gs_btn], | |
) | |
video_output.clear( | |
lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]), | |
outputs=[extract_glb_btn, extract_gs_btn], | |
) | |
extract_glb_btn.click( | |
extract_glb, | |
inputs=[output_buf, mesh_simplify, texture_size], | |
outputs=[model_output, download_glb], | |
).then( | |
lambda: gr.Button(interactive=True), | |
outputs=[download_glb], | |
) | |
extract_gs_btn.click( | |
extract_gaussian, | |
inputs=[output_buf], | |
outputs=[model_output, download_gs], | |
).then( | |
lambda: gr.Button(interactive=True), | |
outputs=[download_gs], | |
) | |
model_output.clear( | |
lambda: gr.Button(interactive=False), | |
outputs=[download_glb], | |
) | |
# Launch the Gradio app | |
if __name__ == "__main__": | |
pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large") | |
pipeline.cuda() | |
try: | |
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg | |
except: | |
pass | |
demo.launch() | |