Spaces:
Paused
Paused
import torch | |
import torchvision.transforms.functional as TF | |
import numpy as np | |
import random | |
import os | |
import sys | |
import random | |
from diffusers.utils import load_image | |
from diffusers import EulerDiscreteScheduler, T2IAdapter | |
from huggingface_hub import hf_hub_download | |
import spaces | |
import gradio as gr | |
from pipeline_t2i_adapter import PhotoMakerStableDiffusionXLAdapterPipeline | |
from face_utils import FaceAnalysis2, analyze_faces | |
from style_template import styles | |
from aspect_ratio_template import aspect_ratios | |
# global variable | |
base_model_path = 'SG161222/RealVisXL_V4.0' | |
face_detector = FaceAnalysis2(providers=['CPUExecutionProvider', 'CUDAExecutionProvider'], allowed_modules=['detection', 'recognition']) | |
face_detector.prepare(ctx_id=0, det_size=(640, 640)) | |
try: | |
if torch.cuda.is_available(): | |
device = "cuda" | |
elif sys.platform == "darwin" and torch.backends.mps.is_available(): | |
device = "mps" | |
else: | |
device = "cpu" | |
except: | |
device = "cpu" | |
MAX_SEED = np.iinfo(np.int32).max | |
STYLE_NAMES = list(styles.keys()) | |
DEFAULT_STYLE_NAME = "Photographic (Default)" | |
ASPECT_RATIO_LABELS = list(aspect_ratios) | |
DEFAULT_ASPECT_RATIO = ASPECT_RATIO_LABELS[0] | |
enable_doodle_arg = False | |
photomaker_ckpt = hf_hub_download(repo_id="TencentARC/PhotoMaker-V2", filename="photomaker-v2.bin", repo_type="model") | |
if torch.cuda.is_available() and torch.cuda.is_bf16_supported(): | |
torch_dtype = torch.bfloat16 | |
else: | |
torch_dtype = torch.float16 | |
if device == "mps": | |
torch_dtype = torch.float16 | |
# load adapter | |
adapter = T2IAdapter.from_pretrained( | |
"TencentARC/t2i-adapter-sketch-sdxl-1.0", torch_dtype=torch_dtype, variant="fp16" | |
).to(device) | |
pipe = PhotoMakerStableDiffusionXLAdapterPipeline.from_pretrained( | |
base_model_path, | |
adapter=adapter, | |
torch_dtype=torch_dtype, | |
use_safetensors=True, | |
variant="fp16", | |
).to(device) | |
pipe.load_photomaker_adapter( | |
os.path.dirname(photomaker_ckpt), | |
subfolder="", | |
weight_name=os.path.basename(photomaker_ckpt), | |
trigger_word="img", | |
pm_version="v2", | |
) | |
pipe.id_encoder.to(device) | |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config) | |
# pipe.set_adapters(["photomaker"], adapter_weights=[1.0]) | |
pipe.fuse_lora() | |
pipe.to(device) | |
def generate_image( | |
upload_images, | |
prompt, | |
negative_prompt, | |
aspect_ratio_name, | |
style_name, | |
num_steps, | |
style_strength_ratio, | |
num_outputs, | |
guidance_scale, | |
seed, | |
use_doodle, | |
sketch_image, | |
adapter_conditioning_scale, | |
adapter_conditioning_factor, | |
progress=gr.Progress(track_tqdm=True) | |
): | |
prompts = [f"{prompt} as an olympic athlete", | |
f"{prompt} as an olympic swimmer in the olympics", | |
f"{prompt} as an olympic gymnist in the olympics", | |
f"{prompt} as an olympic runner in the olympics", | |
f"{prompt} as an olympic tennis player in the olympics", | |
f"{prompt} as an olympic basketball player in the olympics", | |
f"{prompt} as an olympic football player in the olympics", | |
f"{prompt} as an olympic badminton player in the olympics", | |
f"{prompt} as an olympic surfer in the olympics", | |
] | |
prompt = random.choice(prompts) | |
if use_doodle: | |
sketch_image = sketch_image["composite"] | |
r, g, b, a = sketch_image.split() | |
sketch_image = a.convert("RGB") | |
sketch_image = TF.to_tensor(sketch_image) > 0.5 # Inversion | |
sketch_image = TF.to_pil_image(sketch_image.to(torch.float32)) | |
adapter_conditioning_scale = adapter_conditioning_scale | |
adapter_conditioning_factor = adapter_conditioning_factor | |
else: | |
adapter_conditioning_scale = 0. | |
adapter_conditioning_factor = 0. | |
sketch_image = None | |
# check the trigger word | |
image_token_id = pipe.tokenizer.convert_tokens_to_ids(pipe.trigger_word) | |
input_ids = pipe.tokenizer.encode(prompt) | |
if image_token_id not in input_ids: | |
raise gr.Error(f"Cannot find the trigger word '{pipe.trigger_word}' in text prompt! Please refer to step 2️⃣") | |
if input_ids.count(image_token_id) > 1: | |
raise gr.Error(f"Cannot use multiple trigger words '{pipe.trigger_word}' in text prompt!") | |
# determine output dimensions by the aspect ratio | |
output_w, output_h = aspect_ratios[aspect_ratio_name] | |
print(f"[Debug] Generate image using aspect ratio [{aspect_ratio_name}] => {output_w} x {output_h}") | |
# apply the style template | |
prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt) | |
if upload_images is None: | |
raise gr.Error(f"Cannot find any input face image! Please refer to step 1️⃣") | |
input_id_images = [] | |
for img in upload_images: | |
input_id_images.append(load_image(img)) | |
id_embed_list = [] | |
for img in input_id_images: | |
img = np.array(img) | |
img = img[:, :, ::-1] | |
faces = analyze_faces(face_detector, img) | |
if len(faces) > 0: | |
id_embed_list.append(torch.from_numpy((faces[0]['embedding']))) | |
if len(id_embed_list) == 0: | |
raise gr.Error(f"No face detected, please update the input face image(s)") | |
id_embeds = torch.stack(id_embed_list) | |
generator = torch.Generator(device=device).manual_seed(seed) | |
print("Start inference...") | |
print(f"[Debug] Seed: {seed}") | |
print(f"[Debug] Prompt: {prompt}, \n[Debug] Neg Prompt: {negative_prompt}") | |
start_merge_step = int(float(style_strength_ratio) / 100 * num_steps) | |
if start_merge_step > 30: | |
start_merge_step = 30 | |
print(start_merge_step) | |
images = pipe( | |
prompt=prompt, | |
width=output_w, | |
height=output_h, | |
input_id_images=input_id_images, | |
negative_prompt=negative_prompt, | |
num_images_per_prompt=num_outputs, | |
num_inference_steps=num_steps, | |
start_merge_step=start_merge_step, | |
generator=generator, | |
guidance_scale=guidance_scale, | |
id_embeds=id_embeds, | |
image=sketch_image, | |
adapter_conditioning_scale=adapter_conditioning_scale, | |
adapter_conditioning_factor=adapter_conditioning_factor, | |
).images | |
return images, gr.update(visible=True) | |
def swap_to_gallery(images): | |
return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False) | |
def upload_example_to_gallery(images, prompt, style, negative_prompt): | |
return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False) | |
def remove_back_to_files(): | |
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True) | |
def change_doodle_space(use_doodle): | |
if use_doodle: | |
return gr.update(visible=True) | |
else: | |
return gr.update(visible=False) | |
def remove_tips(): | |
return gr.update(visible=False) | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
def apply_style(style_name: str, positive: str, negative: str = "") -> tuple[str, str]: | |
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME]) | |
return p.replace("{prompt}", positive), n + ' ' + negative | |
def get_image_path_list(folder_name): | |
image_basename_list = os.listdir(folder_name) | |
image_path_list = sorted([os.path.join(folder_name, basename) for basename in image_basename_list]) | |
return image_path_list | |
def get_example(): | |
case = [ | |
[ | |
get_image_path_list('./examples/scarletthead_woman'), | |
"instagram photo, portrait photo of a woman img, colorful, perfect face, natural skin, hard shadows, film grain", | |
"(No style)", | |
"(asymmetry, worst quality, low quality, illustration, 3d, 2d, painting, cartoons, sketch), open mouth", | |
], | |
[ | |
get_image_path_list('./examples/newton_man'), | |
"sci-fi, closeup portrait photo of a man img wearing the sunglasses in Iron man suit, face, slim body, high quality, film grain", | |
"(No style)", | |
"(asymmetry, worst quality, low quality, illustration, 3d, 2d, painting, cartoons, sketch), open mouth", | |
], | |
] | |
return case | |
### Description and style | |
logo = r""" | |
<center><img src='https://photo-maker.github.io/assets/logo.png' alt='PhotoMaker logo' style="width:80px; margin-bottom:10px"></center> | |
""" | |
title = r""" | |
<h1 align="center">Olympics AI Photobooth 🥇📷: </h1> | |
<h2 align="center">Turn yourself into an Olympic athlete with PhotoMaker V2</h2> | |
""" | |
article = r""" | |
If PhotoMaker V2 is helpful, please help to ⭐ the <a href='https://github.com/TencentARC/PhotoMaker' target='_blank'>Github Repo</a>. Thanks! | |
[![GitHub Stars](https://img.shields.io/github/stars/TencentARC/PhotoMaker?style=social)](https://github.com/TencentARC/PhotoMaker) | |
--- | |
📝 **Citation** | |
<br> | |
If our work is useful for your research, please consider citing: | |
```bibtex | |
@article{li2023photomaker, | |
title={PhotoMaker: Customizing Realistic Human Photos via Stacked ID Embedding}, | |
author={Li, Zhen and Cao, Mingdeng and Wang, Xintao and Qi, Zhongang and Cheng, Ming-Ming and Shan, Ying}, | |
booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, | |
year={2024} | |
} | |
``` | |
📋 **License** | |
<br> | |
Apache-2.0 LICENSE. Please refer to the [LICENSE file](https://huggingface.co/TencentARC/PhotoMaker/blob/main/LICENSE) for details. | |
📧 **Contact** | |
<br> | |
If you have any questions, please feel free to reach me out at <b>[email protected]</b>. | |
""" | |
tips = r""" | |
### Usage tips of PhotoMaker | |
1. Upload **more photos**of the person to be customized to **improve ID fidelty**. | |
2. If you find that the image quality is poor when using doodle for control, you can reduce the conditioning scale and factor of the adapter. | |
If you have any issues, leave the issue in the discussion page of the space. For a more stable (queue-free) experience, you can duplicate the space. | |
""" | |
# We have provided some generate examples and comparisons at: [this website](). | |
# css = ''' | |
# body gradio-app{ | |
# background-image: url(https://i.imgur.com/LkW5bSv.png) !important; | |
# background-position: center -131px !important; | |
# background-size: 1480px !important; | |
# background-repeat: no-repeat !important; | |
# } | |
# .gradio-container {width: 85% !important} | |
# ''' | |
css = ''' | |
.gradio-container {width: 85% !important} | |
''' | |
with gr.Blocks(css=css) as demo: | |
#gr.Markdown(logo) | |
gr.Markdown(title) | |
gr.Markdown("""Upload one or more images of yourself, and photos of you as an olymic athlete will be automatically generated using [PhotoMaker V2](https://huggingface.co/spaces/TencentARC/PhotoMaker-V2)✨""") | |
#gr.Markdown(description) | |
# gr.DuplicateButton( | |
# value="Duplicate Space for private use ", | |
# elem_id="duplicate-button", | |
# visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", | |
# ) | |
with gr.Row(): | |
with gr.Column(): | |
files = gr.Files( | |
label="Drag (Select) 1 or more photos of your face", | |
file_types=["image"] | |
) | |
uploaded_files = gr.Gallery(label="Your images", visible=False, columns=5, rows=1, height=200) | |
with gr.Column(visible=False) as clear_button: | |
remove_and_reupload = gr.ClearButton(value="Remove and upload new ones", components=files, size="sm") | |
style = gr.Dropdown(label="Style template", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME) | |
submit = gr.Button("Submit") | |
with gr.Accordion(open=False, label="Advanced Options"): | |
prompt = gr.Textbox(label="Prompt", | |
info="Try something like 'a photo of a man/woman img', 'img' is the trigger word.", | |
placeholder="A photo of a [man/woman img]...", value="a photo of a person img") | |
aspect_ratio = gr.Dropdown(label="Output aspect ratio", choices=ASPECT_RATIO_LABELS, value=DEFAULT_ASPECT_RATIO) | |
with gr.Tab(label="more options"): | |
negative_prompt = gr.Textbox( | |
label="Negative Prompt", | |
placeholder="low quality", | |
value="nsfw, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry", | |
) | |
num_steps = gr.Slider( | |
label="Number of sample steps", | |
minimum=20, | |
maximum=100, | |
step=1, | |
value=50, | |
) | |
style_strength_ratio = gr.Slider( | |
label="Style strength (%)", | |
minimum=15, | |
maximum=50, | |
step=1, | |
value=20, | |
) | |
num_outputs = gr.Slider( | |
label="Number of output images", | |
minimum=1, | |
maximum=4, | |
step=1, | |
value=3, | |
visible=False | |
) | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.1, | |
maximum=10.0, | |
step=0.1, | |
value=5, | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Tab(label="T2I-Adapter-Doodle (Optional)") as doodle_space: | |
enable_doodle = gr.Checkbox( | |
label="Enable Drawing Doodle for Control", value=enable_doodle_arg, | |
info="After enabling this option, PhotoMaker will generate content based on your doodle on the canvas, driven by the T2I-Adapter (Quality may be decreased)", | |
) | |
with gr.Row(): | |
sketch_image = gr.Sketchpad( | |
label="Canvas", | |
type="pil", | |
crop_size=[1024,1024], | |
layers=False, | |
canvas_size=(350, 350), | |
brush=gr.Brush(default_size=5, colors=["#000000"], color_mode="fixed") | |
) | |
with gr.Group(): | |
adapter_conditioning_scale = gr.Slider( | |
label="Adapter conditioning scale", | |
minimum=0.5, | |
maximum=1, | |
step=0.1, | |
value=0.7, | |
) | |
adapter_conditioning_factor = gr.Slider( | |
label="Adapter conditioning factor", | |
info="Fraction of timesteps for which adapter should be applied", | |
minimum=0.5, | |
maximum=1, | |
step=0.1, | |
value=0.8, | |
) | |
with gr.Column(): | |
gallery = gr.Gallery(label="Generated Images") | |
usage_tips = gr.Markdown(label="Usage tips of PhotoMaker", value=tips ,visible=False) | |
files.upload(fn=swap_to_gallery, inputs=files, outputs=[uploaded_files, clear_button, files]) | |
remove_and_reupload.click(fn=remove_back_to_files, outputs=[uploaded_files, clear_button, files]) | |
enable_doodle.select(fn=change_doodle_space, inputs=enable_doodle, outputs=doodle_space) | |
input_list = [ | |
files, | |
prompt, | |
negative_prompt, | |
aspect_ratio, | |
style, | |
num_steps, | |
style_strength_ratio, | |
num_outputs, | |
guidance_scale, | |
seed, | |
enable_doodle, | |
sketch_image, | |
adapter_conditioning_scale, | |
adapter_conditioning_factor | |
] | |
submit.click( | |
fn=remove_tips, | |
outputs=usage_tips, | |
).then( | |
fn=randomize_seed_fn, | |
inputs=[seed, randomize_seed], | |
outputs=seed, | |
queue=False, | |
api_name=False, | |
).then( | |
fn=generate_image, | |
inputs=input_list, | |
outputs=[gallery, usage_tips] | |
) | |
# gr.Examples( | |
# examples=get_example(), | |
# inputs=[files, prompt, style, negative_prompt], | |
# run_on_click=True, | |
# fn=upload_example_to_gallery, | |
# outputs=[uploaded_files, clear_button, files], | |
# ) | |
#gr.Markdown(article) | |
demo.launch() | |