Spaces:
Running
Running
File size: 10,236 Bytes
41d644a 13766ed 41d644a de34c2e a618ddf 49a7469 a618ddf 41d644a bb2f28b 41d644a a0458ca 41d644a bb2f28b 41d644a bb2f28b 41d644a bb2f28b 41d644a bb2f28b 41d644a bb2f28b 41d644a a0458ca 41d644a a0458ca 41d644a a0458ca 41d644a dd6f9c0 41d644a a57c3e7 41d644a e1846bc 41d644a bb2f28b 5c1679c bb2f28b 41d644a bb2f28b 41d644a a2c1a2b 41d644a c02258c a0458ca 828615c ed72e6e a2c1a2b a0458ca 41d644a a0458ca 41d644a a0458ca 41d644a a0458ca 41d644a a0458ca 41d644a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
import ast
import argparse
import glob
import pickle
import gradio as gr
import numpy as np
import pandas as pd
block_css = """
#notice_markdown {
font-size: 104%
}
#notice_markdown th {
display: none;
}
#notice_markdown td {
padding-top: 6px;
padding-bottom: 6px;
}
#leaderboard_markdown {
font-size: 104%
}
#leaderboard_markdown td {
padding-top: 6px;
padding-bottom: 6px;
}
#leaderboard_dataframe td {
line-height: 0.1em;
font-size: 8px;
}
footer {
display:none !important
}
.image-container {
display: flex;
align-items: center;
padding: 1px;
}
.image-container img {
margin: 0 30px;
height: 20px;
max-height: 100%;
width: auto;
max-width: 20%;
}
"""
def model_hyperlink(model_name, link):
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
def load_leaderboard_table_csv(filename, add_hyperlink=True):
lines = open(filename).readlines()
heads = [v.strip() for v in lines[0].split(",")]
rows = []
for i in range(1, len(lines)):
row = [v.strip() for v in lines[i].split(",")]
for j in range(len(heads)):
item = {}
for h, v in zip(heads, row):
if h != "Model" and h != "Link" and h != "Language Model" and h != "Open Source":
item[h] = float(v)
else:
item[h] = v
if add_hyperlink:
item["Model"] = model_hyperlink(item["Model"], item["Link"])
rows.append(item)
return rows
def get_arena_table(model_table_df):
# sort by rating
model_table_df = model_table_df.sort_values(by=["Average Score"], ascending=False)
values = []
for i in range(len(model_table_df)):
row = []
model_key = model_table_df.index[i]
model_name = model_table_df["Model"].values[model_key]
# rank
row.append(i + 1)
# model display name
row.append(model_name)
# row.append(
# model_table_df["Language Model"].values[model_key]
# )
row.append(
model_table_df["Open Source"].values[model_key]
)
row.append(
model_table_df["Text Recognition"].values[model_key]
)
row.append(
model_table_df["Text Referring"].values[model_key]
)
row.append(
model_table_df["Text Spotting"].values[model_key]
)
row.append(
model_table_df["Relation Extraction"].values[model_key]
)
row.append(
model_table_df["Element Parsing"].values[model_key]
)
row.append(
model_table_df["Mathematical Calculation"].values[model_key]
)
row.append(
model_table_df["Visual Text Understanding"].values[model_key]
)
row.append(
model_table_df["Knowledge Reasoning"].values[model_key]
)
row.append(
model_table_df["Average Score"].values[model_key]
)
values.append(row)
return values
def get_cn_table(model_table_df):
# sort by rating
model_table_df = model_table_df.sort_values(by=["Average Score"], ascending=False)
values = []
for i in range(len(model_table_df)):
row = []
model_key = model_table_df.index[i]
model_name = model_table_df["Model"].values[model_key]
# rank
row.append(i + 1)
# model display name
row.append(model_name)
row.append(
model_table_df["Open Source"].values[model_key]
)
row.append(
model_table_df["Text Recognition"].values[model_key]
)
row.append(
model_table_df["Relation Extraction"].values[model_key]
)
row.append(
model_table_df["Element Parsing"].values[model_key]
)
row.append(
model_table_df["Visual Text Understanding"].values[model_key]
)
row.append(
model_table_df["Knowledge Reasoning"].values[model_key]
)
row.append(
model_table_df["Average Score"].values[model_key]
)
values.append(row)
return values
def build_leaderboard_tab(leaderboard_table_file, leaderboard_table_file_2, show_plot=False):
if leaderboard_table_file:
data = load_leaderboard_table_csv(leaderboard_table_file)
data_2 = load_leaderboard_table_csv(leaderboard_table_file_2)
model_table_df = pd.DataFrame(data)
model_table_df_2 = pd.DataFrame(data_2)
md_head = f"""
# π OCRBench v2 Leaderboard
| [GitHub](https://github.com/Yuliang-Liu/MultimodalOCR) | [Paper](https://arxiv.org/abs/2305.07895) |
"""
gr.Markdown(md_head, elem_id="leaderboard_markdown")
with gr.Tabs() as tabs:
# arena table
with gr.Tab("OCRBench v2", id=0):
arena_table_vals = get_arena_table(model_table_df)
md = "OCRBench v2 is a comprehensive evaluation benchmark designed to assess the OCR capabilities of Large Multimodal Models. It comprises five components: Text Recognition, SceneText-Centric VQA, Document-Oriented VQA, Key Information Extraction, and Handwritten Mathematical Expression Recognition. The benchmark includes 1000 question-answer pairs, and all the answers undergo manual verification and correction to ensure a more precise evaluation."
gr.Markdown(md, elem_id="leaderboard_markdown")
gr.Dataframe(
headers=[
"Rank",
"Name",
"Open Source",
"Text Recognition",
"Text Referring",
"Text Spotting",
"Relation Extraction",
"Element Parsing",
"Mathematical Calculation",
"Visual Text Understanding",
"Knowledge Reasoning",
"Average Score",
],
datatype=[
"str",
"markdown",
"str",
"number",
"number",
"number",
"number",
"number",
"number",
"number",
"number",
"number",
],
value=arena_table_vals,
elem_id="arena_leaderboard_dataframe",
wrap=True,
)
with gr.Tab("OCRBench v2 cn", id=1):
arena_table_vals = get_cn_table(model_table_df_2)
md = "OCRBench is a comprehensive evaluation benchmark designed to assess the OCR capabilities of Large Multimodal Models. It comprises five components: Text Recognition, SceneText-Centric VQA, Document-Oriented VQA, Key Information Extraction, and Handwritten Mathematical Expression Recognition. The benchmark includes 1000 question-answer pairs, and all the answers undergo manual verification and correction to ensure a more precise evaluation."
gr.Markdown(md, elem_id="leaderboard_markdown")
gr.Dataframe(
headers=[
"Rank",
"Name",
"Open Source",
"Text Recognition",
"Relation Extraction",
"Element Parsing",
"Visual Text Understanding",
"Knowledge Reasoning",
"Average Score",
],
datatype=[
"str",
"markdown",
"str",
"number",
"number",
"number",
"number",
"number",
"number",
],
value=arena_table_vals,
elem_id="arena_leaderboard_dataframe",
# height=700,
column_widths=[60, 120,150,100, 100, 100, 100, 100, 80],
wrap=True,
)
else:
pass
md_tail = f"""
# Notice
Sometimes, API calls to closed-source models may not succeed. In such cases, we will repeat the calls for unsuccessful samples until it becomes impossible to obtain a successful response. It is important to note that due to rigorous security reviews by OpenAI, GPT4V refuses to provide results for the 84 samples in OCRBench.
If you would like to include your model in the OCRBench leaderboard, please follow the evaluation instructions provided on [GitHub](https://github.com/Yuliang-Liu/MultimodalOCR), [VLMEvalKit](https://github.com/open-compass/VLMEvalKit) or [lmms-eval](https://github.com/EvolvingLMMs-Lab/lmms-eval) and feel free to contact us via email at [email protected]. We will update the leaderboard in time."""
gr.Markdown(md_tail, elem_id="leaderboard_markdown")
def build_demo(leaderboard_table_file, leaderboard_table_file_2):
text_size = gr.themes.sizes.text_lg
with gr.Blocks(
title="OCRBench Leaderboard",
theme=gr.themes.Base(text_size=text_size),
css=block_css,
) as demo:
leader_components = build_leaderboard_tab(
leaderboard_table_file, leaderboard_table_file_2, show_plot=True
)
return demo
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--share", action="store_true")
parser.add_argument("--OCRBench_file", type=str, default="./OCRBench_en.csv")
parser.add_argument("--OCRBench_file_2", type=str, default="./OCRBench_cn.csv")
args = parser.parse_args()
demo = build_demo(args.OCRBench_file, args.OCRBench_file_2)
demo.launch() |