File size: 10,088 Bytes
41d644a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13766ed
 
 
 
41d644a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de34c2e
a618ddf
49a7469
a618ddf
 
41d644a
 
 
 
 
 
 
bb2f28b
41d644a
 
 
 
 
 
 
 
 
 
a0458ca
 
 
41d644a
 
 
 
 
 
 
 
bb2f28b
41d644a
 
 
bb2f28b
41d644a
 
 
bb2f28b
41d644a
 
 
bb2f28b
41d644a
 
 
bb2f28b
 
 
 
 
 
 
 
 
 
 
 
 
41d644a
 
 
 
a0458ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9b7238
9037ee9
f9b7238
 
a0458ca
f9b7238
 
41d644a
dd6f9c0
f9b7238
41d644a
 
 
 
45d6236
f9b7238
 
41d644a
 
 
 
 
 
 
bb2f28b
 
 
 
 
5c1679c
bb2f28b
 
41d644a
 
 
 
 
 
 
 
 
 
 
bb2f28b
 
 
41d644a
 
 
f9b7238
a2c1a2b
41d644a
f9b7238
 
 
a0458ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
828615c
28bef9e
a2c1a2b
a0458ca
41d644a
 
 
 
f9b7238
50fc020
41d644a
 
f9b7238
41d644a
 
 
 
 
 
 
 
f9b7238
41d644a
 
 
 
 
 
f9b7238
 
41d644a
 
f9b7238
41d644a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import ast
import argparse
import glob
import pickle

import gradio as gr
import numpy as np
import pandas as pd
block_css = """
#notice_markdown {
    font-size: 104%
}
#notice_markdown th {
    display: none;
}
#notice_markdown td {
    padding-top: 6px;
    padding-bottom: 6px;
}
#leaderboard_markdown {
    font-size: 104%
}
#leaderboard_markdown td {
    padding-top: 6px;
    padding-bottom: 6px;
}
#leaderboard_dataframe td {
    line-height: 0.1em;
    font-size: 8px;
}
footer {
    display:none !important
}
.image-container {
    display: flex;
    align-items: center;
    padding: 1px;
}
.image-container img {
    margin: 0 30px;
    height: 20px;
    max-height: 100%;
    width: auto;
    max-width: 20%;
}
"""
def model_hyperlink(model_name, link):
    return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
def load_leaderboard_table_csv(filename, add_hyperlink=True):
    lines = open(filename).readlines()
    heads = [v.strip() for v in lines[0].split(",")]
    rows = []
    for i in range(1, len(lines)):
        row = [v.strip() for v in lines[i].split(",")]
        for j in range(len(heads)):
            item = {}
            for h, v in zip(heads, row):
                if h != "Model" and h != "Link" and h != "Language Model" and h != "Open Source":
                    item[h] = float(v)
                else:
                    item[h] = v
            if add_hyperlink:
                item["Model"] = model_hyperlink(item["Model"], item["Link"])
        rows.append(item)
    return rows

def get_arena_table(model_table_df):
    # sort by rating
    model_table_df = model_table_df.sort_values(by=["Average Score"], ascending=False)
    values = []
    for i in range(len(model_table_df)):
        row = []
        model_key = model_table_df.index[i]
        model_name = model_table_df["Model"].values[model_key]
        # rank
        row.append(i + 1)
        # model display name
        row.append(model_name)

        # row.append(
        #     model_table_df["Language Model"].values[model_key]
        # )
        row.append(
            model_table_df["Open Source"].values[model_key]
        )
        row.append(
            model_table_df["Text Recognition"].values[model_key]
        )

        row.append(
            model_table_df["Text Referring"].values[model_key]
        )

        row.append(
            model_table_df["Text Spotting"].values[model_key]
        )

        row.append(
            model_table_df["Relation Extraction"].values[model_key]
        )

        row.append(
            model_table_df["Element Parsing"].values[model_key]
        )

        row.append(
            model_table_df["Mathematical Calculation"].values[model_key]
        )

        row.append(
            model_table_df["Visual Text Understanding"].values[model_key]
        )

        row.append(
            model_table_df["Knowledge Reasoning"].values[model_key]
        )
        
        row.append(
            model_table_df["Average Score"].values[model_key]
        )
        values.append(row)
    return values

def get_cn_table(model_table_df):
    # sort by rating
    model_table_df = model_table_df.sort_values(by=["Average Score"], ascending=False)
    values = []
    for i in range(len(model_table_df)):
        row = []
        model_key = model_table_df.index[i]
        model_name = model_table_df["Model"].values[model_key]
        # rank
        row.append(i + 1)
        # model display name
        row.append(model_name)

        row.append(
            model_table_df["Open Source"].values[model_key]
        )
        row.append(
            model_table_df["Text Recognition"].values[model_key]
        )


        row.append(
            model_table_df["Relation Extraction"].values[model_key]
        )

        row.append(
            model_table_df["Element Parsing"].values[model_key]
        )

        row.append(
            model_table_df["Visual Text Understanding"].values[model_key]
        )

        row.append(
            model_table_df["Knowledge Reasoning"].values[model_key]
        )
        
        row.append(
            model_table_df["Average Score"].values[model_key]
        )
        values.append(row)
    return values

def build_leaderboard_tab(leaderboard_table_file_en, leaderboard_table_file_cn, show_plot=False):
    if leaderboard_table_file_en:
        data_en = load_leaderboard_table_csv(leaderboard_table_file_en)
        data_cn = load_leaderboard_table_csv(leaderboard_table_file_cn)
        
        model_table_df_en = pd.DataFrame(data_en)
        model_table_df_cn = pd.DataFrame(data_cn)
        md_head = f"""
        # πŸ† OCRBench v2 Leaderboard
        | [GitHub](https://github.com/Yuliang-Liu/MultimodalOCR) |
        """
        gr.Markdown(md_head, elem_id="leaderboard_markdown")
        with gr.Tabs() as tabs:
            # arena table
            with gr.Tab("OCRBench v2 English subsets", id=0):
                arena_table_vals = get_arena_table(model_table_df_en)
                md = "OCRBench v2 is a large-scale bilingual text-centric benchmark with currently the most comprehensive set of tasks (4Γ— more tasks than the previous multi-scene benchmark OCRBench), the widest coverage of scenarios (31 diverse scenarios including street scene, receipt, formula, diagram, and so on), and thorough evaluation metrics, with a total of 10, 000 human-verified question-answering pairs and a high proportion of difficult samples."
                gr.Markdown(md, elem_id="leaderboard_markdown")
                gr.Dataframe(
                    headers=[
                        "Rank",
                        "Name",
                        "Open Source",
                        "Text Recognition",
                        "Text Referring",
                        "Text Spotting",
                        "Relation Extraction",
                        "Element Parsing",
                        "Mathematical Calculation",
                        "Visual Text Understanding",
                        "Knowledge Reasoning",
                        "Average Score",
                    ],
                    datatype=[
                        "str",
                        "markdown",
                        "str",
                        "number",
                        "number",
                        "number",
                        "number",
                        "number",
                        "number",
                        "number",
                        "number",
                        "number",
                    ],
                    value=arena_table_vals,
                    elem_id="arena_leaderboard_dataframe",
                    column_widths=[90, 150, 120, 170, 150, 150, 150, 150, 170, 170, 150, 150],
                    wrap=True,
                )
            with gr.Tab("OCRBench v2 Chinese subsets", id=1):
                arena_table_vals = get_cn_table(model_table_df_cn)
                md = "OCRBench v2 is a large-scale bilingual text-centric benchmark with currently the most comprehensive set of tasks (4Γ— more tasks than the previous multi-scene benchmark OCRBench), the widest coverage of scenarios (31 diverse scenarios including street scene, receipt, formula, diagram, and so on), and thorough evaluation metrics, with a total of 10, 000 human-verified question-answering pairs and a high proportion of difficult samples."
                gr.Markdown(md, elem_id="leaderboard_markdown")
                gr.Dataframe(
                    headers=[
                        "Rank",
                        "Name",
                        "Open Source",
                        "Text Recognition",
                        "Relation Extraction",
                        "Element Parsing",
                        "Visual Text Understanding",
                        "Knowledge Reasoning",
                        "Average Score",
                    ],
                    datatype=[
                        "str",
                        "markdown",
                        "str",
                        "number",
                        "number",
                        "number",
                        "number",
                        "number",
                        "number",
                    ],
                    value=arena_table_vals,
                    elem_id="arena_leaderboard_dataframe",
                    # height=700,
                    column_widths=[60, 120,100, 110, 110, 110, 110, 110, 80],
                    wrap=True,
                )
    else:
        pass
    md_tail = f"""
    # Notice
    Sometimes, API calls to closed-source models may not succeed. In such cases, we will repeat the calls for unsuccessful samples until it becomes impossible to obtain a successful response.
    If you would like to include your model in the OCRBench leaderboard, please follow the evaluation instructions provided on [GitHub](https://github.com/Yuliang-Liu/MultimodalOCR) and feel free to contact us via email at [email protected]. We will update the leaderboard in time."""
    gr.Markdown(md_tail, elem_id="leaderboard_markdown")

def build_demo(leaderboard_table_file_en, leaderboard_table_file_cn):
    text_size = gr.themes.sizes.text_lg

    with gr.Blocks(
        title="OCRBench Leaderboard",
        theme=gr.themes.Base(text_size=text_size),
        css=block_css,
    ) as demo:
        leader_components = build_leaderboard_tab(
            leaderboard_table_file_en, leaderboard_table_file_cn, show_plot=True
        )
    return demo

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--share", action="store_true")
    parser.add_argument("--OCRBench_file_en", type=str, default="./OCRBench_en.csv")
    parser.add_argument("--OCRBench_file_cn", type=str, default="./OCRBench_cn.csv")
    args = parser.parse_args()

    demo = build_demo(args.OCRBench_file_en, args.OCRBench_file_cn)
    demo.launch()