limingj commited on
Commit
39ae490
·
verified ·
1 Parent(s): 8a336ba

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +35 -0
app.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import AutoProcessor, AutoModelForCausalLM
3
+ from PIL import Image
4
+ import torch
5
+
6
+ # 设置模型和处理器
7
+ model_id = "OpenFace-CQUPT/Human_LLaVA"
8
+ processor = AutoProcessor.from_pretrained(model_id)
9
+ model = AutoModelForCausalLM.from_pretrained(model_id).to("cuda" if torch.cuda.is_available() else "cpu")
10
+
11
+ # Streamlit 界面设置
12
+ st.title("Visual Question Answering App")
13
+ st.write("Upload an image and ask a question about it!")
14
+
15
+ # 图片上传
16
+ uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
17
+ question = st.text_input("Ask a question about the image:")
18
+
19
+ # 处理输入并获取答案
20
+ if uploaded_image is not None and question:
21
+ image = Image.open(uploaded_image)
22
+
23
+ # 显示图片和问题
24
+ st.image(image, caption="Uploaded Image", use_column_width=True)
25
+ st.write("Question:", question)
26
+
27
+ # 使用模型生成答案
28
+ with st.spinner("Generating answer..."):
29
+ inputs = processor(images=image, text=question, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
30
+ with torch.no_grad():
31
+ output = model.generate(**inputs)
32
+ answer = processor.decode(output[0], skip_special_tokens=True)
33
+
34
+ # 显示答案
35
+ st.write("Answer:", answer)