SauravMaheshkar
commited on
feat: drop redundant image box
Browse files- app.py +9 -22
- assets/{img.png → example.png} +0 -0
app.py
CHANGED
@@ -3,9 +3,8 @@ import numpy as np
|
|
3 |
import cv2
|
4 |
import torch
|
5 |
|
6 |
-
# import spaces
|
7 |
|
8 |
-
from
|
9 |
|
10 |
from src.plot_utils import show_masks
|
11 |
from gradio_image_annotation import image_annotator
|
@@ -14,20 +13,20 @@ from gradio_image_annotation import image_annotator
|
|
14 |
from sam2.build_sam import build_sam2
|
15 |
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
16 |
|
17 |
-
choice_mapping = {
|
18 |
"tiny": ["sam2_hiera_t.yaml", "assets/checkpoints/sam2_hiera_tiny.pt"],
|
19 |
"small": ["sam2_hiera_s.yaml", "assets/checkpoints/sam2_hiera_small.pt"],
|
20 |
"base_plus": ["sam2_hiera_b+.yaml", "assets/checkpoints/sam2_hiera_base_plus.pt"],
|
21 |
"large": ["sam2_hiera_l.yaml", "assets/checkpoints/sam2_hiera_large.pt"],
|
22 |
}
|
23 |
|
24 |
-
|
25 |
-
def predict(model_choice: str,
|
26 |
config_file, ckpt_path = choice_mapping[str(model_choice)]
|
27 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
28 |
sam2_model = build_sam2(config_file, ckpt_path, device=device)
|
29 |
predictor = SAM2ImagePredictor(sam2_model)
|
30 |
-
predictor.set_image(image)
|
31 |
coordinates = np.array(
|
32 |
[
|
33 |
int(annotations["boxes"][0]["xmin"]),
|
@@ -47,7 +46,7 @@ def predict(model_choice: str, annotations, image):
|
|
47 |
cv2.imwrite("mask.png", mask_image)
|
48 |
|
49 |
return [
|
50 |
-
show_masks(image, masks, scores, box_coords=coordinates),
|
51 |
gr.DownloadButton("Download Mask", value="mask.png", visible=True),
|
52 |
]
|
53 |
|
@@ -68,29 +67,17 @@ with gr.Blocks(delete_cache=(30, 30)) as demo:
|
|
68 |
|
69 |
gr.Markdown(
|
70 |
"""
|
71 |
-
# 2. Upload
|
72 |
-
"""
|
73 |
-
)
|
74 |
-
|
75 |
-
with gr.Row():
|
76 |
-
img = gr.Image(value="./assets/img.png", type="numpy", label="Input Image")
|
77 |
-
|
78 |
-
gr.Markdown(
|
79 |
-
"""
|
80 |
-
# 3. Draw Bounding Box
|
81 |
"""
|
82 |
)
|
83 |
|
84 |
annotator = image_annotator(
|
85 |
-
value={"image":
|
86 |
disable_edit_boxes=True,
|
87 |
-
single_box=True,
|
88 |
label="Draw a bounding box",
|
89 |
)
|
90 |
btn = gr.Button("Get Segmentation Mask")
|
91 |
download_btn = gr.DownloadButton("Download Mask", value="mask.png", visible=False)
|
92 |
-
btn.click(
|
93 |
-
fn=predict, inputs=[model, annotator, img], outputs=[gr.Plot(), download_btn]
|
94 |
-
)
|
95 |
|
96 |
demo.launch()
|
|
|
3 |
import cv2
|
4 |
import torch
|
5 |
|
|
|
6 |
|
7 |
+
from typing import Dict, Any, List
|
8 |
|
9 |
from src.plot_utils import show_masks
|
10 |
from gradio_image_annotation import image_annotator
|
|
|
13 |
from sam2.build_sam import build_sam2
|
14 |
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
15 |
|
16 |
+
choice_mapping: Dict[str, List[str]] = {
|
17 |
"tiny": ["sam2_hiera_t.yaml", "assets/checkpoints/sam2_hiera_tiny.pt"],
|
18 |
"small": ["sam2_hiera_s.yaml", "assets/checkpoints/sam2_hiera_small.pt"],
|
19 |
"base_plus": ["sam2_hiera_b+.yaml", "assets/checkpoints/sam2_hiera_base_plus.pt"],
|
20 |
"large": ["sam2_hiera_l.yaml", "assets/checkpoints/sam2_hiera_large.pt"],
|
21 |
}
|
22 |
|
23 |
+
|
24 |
+
def predict(model_choice, annotations: Dict[str, Any]):
|
25 |
config_file, ckpt_path = choice_mapping[str(model_choice)]
|
26 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
27 |
sam2_model = build_sam2(config_file, ckpt_path, device=device)
|
28 |
predictor = SAM2ImagePredictor(sam2_model)
|
29 |
+
predictor.set_image(annotations["image"])
|
30 |
coordinates = np.array(
|
31 |
[
|
32 |
int(annotations["boxes"][0]["xmin"]),
|
|
|
46 |
cv2.imwrite("mask.png", mask_image)
|
47 |
|
48 |
return [
|
49 |
+
show_masks(annotations["image"], masks, scores, box_coords=coordinates),
|
50 |
gr.DownloadButton("Download Mask", value="mask.png", visible=True),
|
51 |
]
|
52 |
|
|
|
67 |
|
68 |
gr.Markdown(
|
69 |
"""
|
70 |
+
# 2. Upload your Image and draw a bounding box
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
"""
|
72 |
)
|
73 |
|
74 |
annotator = image_annotator(
|
75 |
+
value={"image": cv2.imread("assets/example.png")},
|
76 |
disable_edit_boxes=True,
|
|
|
77 |
label="Draw a bounding box",
|
78 |
)
|
79 |
btn = gr.Button("Get Segmentation Mask")
|
80 |
download_btn = gr.DownloadButton("Download Mask", value="mask.png", visible=False)
|
81 |
+
btn.click(fn=predict, inputs=[model, annotator], outputs=[gr.Plot(), download_btn])
|
|
|
|
|
82 |
|
83 |
demo.launch()
|
assets/{img.png → example.png}
RENAMED
File without changes
|