import contextlib import re import tempfile from functools import lru_cache from typing import Optional import gradio as gr from git import Repo from httpx import Client from huggingface_hub import create_repo, upload_folder from toolz import groupby import kagglehub from kagglehub import KaggleDatasetAdapter client = Client() def clone_into_temp_dir(github_repo_url): temp_dir = tempfile.TemporaryDirectory() return Repo.clone_from(github_repo_url, temp_dir), temp_dir # repo = clone_into_temp_dir("https://github.com/chen-zichen/XplainLLM_dataset/") # clone_into_temp_dir("https://github.com/chen-zichen/XplainLLM_dataset/") def upload_directory_to_hf( repo_id: str, directory: str, oauth_token: str, ): private = False url = create_repo( repo_id, token=oauth_token, exist_ok=True, repo_type="dataset", private=private, ) commit_url = upload_folder( repo_id=repo_id, folder_path=directory, path_in_repo="data", repo_type="dataset", token=oauth_token, commit_message="Migrated from GitHub", ignore_patterns=[ "*.git*", # "*README.md*", "*.DS_Store", "*.env", ], # ignore git files and .env files ) def push_to_hf( source_github_repository, destination_hf_hub_repository, subdirectory, oauth_token: gr.OAuthToken, ): gr.Info("Cloning source GitHub repository...") repo, temporary_directory = clone_into_temp_dir(source_github_repository) gr.Info("Cloning source GitHub repository...Done") gr.Info("Syncing with Hugging Face Hub...") if subdirectory: src_directory = f"{repo.working_dir}/{subdirectory[0]}" else: src_directory = repo.working_dir upload_directory_to_hf( repo_id=destination_hf_hub_repository, directory=src_directory, oauth_token=oauth_token.token, ) gr.Info("Syncing with Hugging Face Hub...Done") temporary_directory.cleanup() return f"Pushed the dataset to [{destination_hf_hub_repository}](https://huggingface.co/datasets/{destination_hf_hub_repository})" def extract_user_name_and_repo_from_url(github_url: str): pattern = r"https://github.com/([^/]+)/([^/]+)" if match := re.search(pattern, github_url): return match[1], match[2] print("No match found in the GitHub URL.") return None def get_files_and_directories(response): data = response.json() grouped_by_type = groupby(lambda item: item["type"], data["tree"]) files = grouped_by_type.get("blob", []) directories = grouped_by_type.get("tree", []) if files: files = [file["path"] for file in files] if directories: directories = [directory["path"] for directory in directories] return {"files": files, "directories": directories} @lru_cache(maxsize=128) def list_git_repo_files_and_directories(repo_url: str, branch: str = "main"): user_name_and_repo = extract_user_name_and_repo_from_url(repo_url) if user_name_and_repo is None: return None user_name, repo_name = user_name_and_repo url = f"https://api.github.com/repos/{user_name}/{repo_name}/git/trees/{branch}" response = client.get(url) if response.status_code == 200: return get_files_and_directories(response) def show_files_and_directories(url: str): with contextlib.suppress(Exception): files_and_directories = list_git_repo_files_and_directories(url) directories = files_and_directories.get("directories", []) files = files_and_directories.get("files", []) print(directories) return gr.Dropdown( label="Directories", choices=directories, max_choices=1, visible=True, interactive=True, multiselect=True, ), gr.Dropdown( label="Files", choices=files, max_choices=None, visible=True, interactive=True, multiselect=True, ) def push_kaggle_to_hf( source_kaggle_dataset: str, destination_hf_hub_repository: str, file_path: str, oauth_token: gr.OAuthToken, ): """Pushes a Kaggle dataset to HuggingFace Hub using the HF dataset adapter""" if not file_path: raise ValueError("File path must be specified for Kaggle datasets") gr.Info("Loading Kaggle dataset...") dataset = kagglehub.load_dataset( KaggleDatasetAdapter.HUGGING_FACE, source_kaggle_dataset, file_path, ) gr.Info("Loading Kaggle dataset...Done") gr.Info("Pushing to Hugging Face Hub...") dataset.push_to_hub( destination_hf_hub_repository, token=oauth_token.token, ) gr.Info("Pushing to Hugging Face Hub...Done") return f"Pushed the dataset to [{destination_hf_hub_repository}](https://huggingface.co/datasets/{destination_hf_hub_repository})" html_text_app_description = """ While GitHub and Kaggle are great platforms, the Hugging Face Datasets Hub is a better place to host and share datasets. Some of the benefits of hosting datasets on the Hugging Face Datasets Hub are:

This app will help you migrate datasets currently hosted on GitHub or Kaggle to the Hugging Face Datasets Hub. Make sure you consider the license of the dataset when migrating it to the Hugging Face Datasets Hub 🤗.

Note: the Kaggle implementation is experimental and may not work for all datasets. Feel free to open a PR to improve it! """ with gr.Blocks(theme=gr.themes.Base()) as demo: gr.HTML( """

Dataset Migration Tool

✨ Migrate datasets to Hugging Face Hub in a few steps ✨
""" ) gr.HTML(html_text_app_description) with gr.Row(): gr.LoginButton(size="sm") with gr.Tabs() as tabs: with gr.Tab("GitHub"): gr.Markdown("### Location of existing dataset") gr.Markdown( "URL for the GitHub repository where the dataset is currently hosted" ) source_github_repository = gr.Textbox( lines=1, label="Source GitHub Repository URL" ) with gr.Accordion("Advanced Options", open=False): gr.Markdown("### Select files and folder to migrate") gr.Markdown( "(Optional): select a specific folder and/or files to migrate from the GitHub repository. If you select a folder all the files in that folder will be migrated." ) folder_in_github_repo = gr.Dropdown( None, label="Folder in the GitHub Repository to migrate", allow_custom_value=True, visible=True, ) files_in_github_repo = gr.Dropdown( None, label="Files in GitHub Repository to migrate", allow_custom_value=True, visible=True, ) source_github_repository.change( show_files_and_directories, [source_github_repository], [folder_in_github_repo, files_in_github_repo], ) gr.Markdown("### Destination for your migrated dataset") destination_hf_hub_repository = gr.Textbox( label="Destination Hugging Face Repository", placeholder="i.e. /", ) github_submit_btn = gr.Button("Migrate GitHub Dataset") github_result = gr.Markdown(label="Summary", visible=True) github_submit_btn.click( push_to_hf, [ source_github_repository, destination_hf_hub_repository, folder_in_github_repo, ], [github_result], ) with gr.Tab("Kaggle"): gr.Markdown("### Source Kaggle Dataset") gr.Markdown("Enter the Kaggle dataset name and file path") source_kaggle_dataset = gr.Textbox( lines=1, label="Source Kaggle Dataset", placeholder="username/dataset-name", ) kaggle_file_path = gr.Textbox( label="File path in dataset", placeholder="e.g., train.csv", info="Specify the file to migrate from the dataset", ) gr.Markdown("### Destination for your migrated dataset") kaggle_destination_hf_hub = gr.Textbox( label="Destination Hugging Face Repository", placeholder="i.e. /", ) kaggle_submit_btn = gr.Button("Migrate Kaggle Dataset") kaggle_result = gr.Markdown(label="Summary", visible=True) kaggle_submit_btn.click( push_kaggle_to_hf, [ source_kaggle_dataset, kaggle_destination_hf_hub, kaggle_file_path, ], [kaggle_result], ) gr.Markdown( """You should add a dataset card for your dataset to help people discover and understand your dataset. You can find instructions for creating a dataset card [here](https://huggingface.co/docs/datasets/dataset_card). If you have any questions or feedback feel free to reach out to us on using the [Discussion tab](https://huggingface.co/spaces/librarian-bots/github-to-huggingface-dataset-migration-tool/discussions/1)""" ) demo.launch()