lgfunderburk commited on
Commit
86c99d6
·
1 Parent(s): aeefc1e

add header

Browse files
Files changed (2) hide show
  1. Dockerfile +4 -1
  2. README.md +1 -1
Dockerfile CHANGED
@@ -10,6 +10,9 @@ COPY pyproject.toml poetry.lock /app/
10
  # Install poetry
11
  RUN pip install poetry
12
 
 
 
 
13
  # Install project dependencies
14
  RUN poetry lock
15
  RUN poetry install
@@ -17,4 +20,4 @@ RUN poetry install
17
  # Copy the rest of the application code
18
  COPY . .
19
 
20
- CMD ["poetry", "run", "chainlit", "run", "app.py", "--port", "7860"]
 
10
  # Install poetry
11
  RUN pip install poetry
12
 
13
+ # Set environment variable to create virtualenv within the project directory
14
+ ENV POETRY_VIRTUALENVS_IN_PROJECT=true
15
+
16
  # Install project dependencies
17
  RUN poetry lock
18
  RUN poetry install
 
20
  # Copy the rest of the application code
21
  COPY . .
22
 
23
+ CMD ["poetry", "run", "chainlit", "run", "app.py", "--port", "7860"]
README.md CHANGED
@@ -50,7 +50,7 @@ The data is from the [Seven Wonders dataset][1] on Hugging Face. https://hugging
50
 
51
  The chatbots retrieval mechanism is developed using Retrieval Augmented Generation (RAG) with [Haystack](https://haystack.deepset.ai/tutorials/22_pipeline_with_promptnode) and its user interface is built with [Chainlit](https://docs.chainlit.io/overview). It is using OpenAI GPT-3.5-turbo.
52
 
53
- ### Pipeline steps (Haystack) - check the full script here: [src/app.py](src/app.py)
54
 
55
  1. Initialize in-memory Document store
56
 
 
50
 
51
  The chatbots retrieval mechanism is developed using Retrieval Augmented Generation (RAG) with [Haystack](https://haystack.deepset.ai/tutorials/22_pipeline_with_promptnode) and its user interface is built with [Chainlit](https://docs.chainlit.io/overview). It is using OpenAI GPT-3.5-turbo.
52
 
53
+ ### Pipeline steps (Haystack) - check the full script here: [app.py](app.py)
54
 
55
  1. Initialize in-memory Document store
56