lgfunderburk commited on
Commit
687e5f0
·
1 Parent(s): 4b2a9ae

add header

Browse files
Files changed (1) hide show
  1. README.md +128 -0
README.md ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: {{Haystack RAG chainlit app}}
3
+ emoji: {{emoji}}
4
+ colorFrom: {{colorFrom}}
5
+ colorTo: {{colorTo}}
6
+ sdk: {{sdk}}
7
+ sdk_version: {{sdkVersion}}
8
+ app_file: app.py
9
+ pinned: false
10
+ ---
11
+
12
+ # Welcome!
13
+
14
+ This chatbot uses RAG to answer questions about the Seven Wonders of the Ancient World.
15
+
16
+ Here are sample questions you can ask it:
17
+
18
+ 1. What is the Great Pyramid of Giza?
19
+ 2. What is the Hanging Gardens of Babylon?
20
+ 3. What is the Temple of Artemis at Ephesus?
21
+ 4. What is the Statue of Zeus at Olympia?
22
+ 5. What is the Mausoleum at Halicarnassus?
23
+ 6. Where is Gardens of Babylon?
24
+ 7. Why did people build Great Pyramid of Giza?
25
+ 8. What does Rhodes Statue look like?
26
+ 9. Why did people visit the Temple of Artemis?
27
+ 10. What is the importance of Colossus of Rhodes?
28
+ 11. What happened to the Tomb of Mausolus?
29
+ 12. How did Colossus of Rhodes collapse?
30
+
31
+ ## How is it built?
32
+
33
+ ### Poetry package management
34
+
35
+ This project uses [Poetry](https://python-poetry.org/) for package management.
36
+
37
+ It uses [this `pyproject.toml` file](pyproject.toml)
38
+
39
+ To install dependencies:
40
+
41
+ ```bash
42
+ pip install poetry
43
+ poetry install
44
+ ```
45
+
46
+ ### Data source:
47
+
48
+ The data is from the [Seven Wonders dataset][1] on Hugging Face. https://huggingface.co/datasets/bilgeyucel/seven-wonders
49
+
50
+ ### Method
51
+
52
+ The chatbots retrieval mechanism is developed using Retrieval Augmented Generation (RAG) with [Haystack](https://haystack.deepset.ai/tutorials/22_pipeline_with_promptnode) and its user interface is built with [Chainlit](https://docs.chainlit.io/overview). It is using OpenAI GPT-3.5-turbo.
53
+
54
+ ### Pipeline steps (Haystack) - check the full script here: [src/app.py](src/app.py)
55
+
56
+ 1. Initialize in-memory Document store
57
+
58
+ ```python
59
+ # Initialize Haystack's QA system
60
+ document_store = InMemoryDocumentStore(use_bm25=True)
61
+ ```
62
+ 2. Load dataset from HF
63
+
64
+ ```python
65
+ dataset = load_dataset("bilgeyucel/seven-wonders", split="train")
66
+ ```
67
+
68
+ 3. Transform documents and load into document store
69
+
70
+ ```python
71
+ document_store.write_documents(dataset)
72
+ ```
73
+ 4. Initialize a RAG prompt
74
+
75
+ ```
76
+ rag_prompt = PromptTemplate(
77
+ prompt="""Synthesize a brief answer from the following text for the given question.
78
+ Provide a clear and concise response that summarizes the key points and information presented in the text.
79
+ Your answer should be in your own words and be no longer than 50 words.
80
+ \n\n Related text: {join(documents)} \n\n Question: {query} \n\n Answer:""",
81
+ output_parser=AnswerParser(),
82
+ )
83
+
84
+ ```
85
+
86
+ 5. Set the nodes using GPT-3.5-turbo
87
+
88
+ ```python
89
+ Set up nodes
90
+ retriever = BM25Retriever(document_store=document_store, top_k=2)
91
+ pn = PromptNode("gpt-3.5-turbo",
92
+ api_key=MY_API_KEY,
93
+ model_kwargs={"stream":False},
94
+ default_prompt_template=rag_prompt)
95
+
96
+ ```
97
+
98
+ 6. Build the pipeline
99
+
100
+ ```python
101
+ # Set up pipeline
102
+ pipe = Pipeline()
103
+ pipe.add_node(component=retriever, name="retriever", inputs=["Query"])
104
+ pipe.add_node(component=pn, name="prompt_node", inputs=["retriever"])
105
+ ```
106
+
107
+ ### Connecting the pipeline to Chainlit
108
+
109
+ ```python
110
+
111
+ @cl.on_message
112
+ async def main(message: str):
113
+ # Use the pipeline to get a response
114
+ output = pipe.run(query=message)
115
+
116
+ # Create a Chainlit message with the response
117
+ response = output['answers'][0].answer
118
+ msg = cl.Message(content=response)
119
+
120
+ # Send the message to the user
121
+ await msg.send()
122
+ ```
123
+
124
+ ### Run application
125
+
126
+ ``` bash
127
+ poetry run chainlit run src/app.py --port 7860
128
+ ```