levente-murgas commited on
Commit
d1f4b94
·
verified ·
1 Parent(s): 6c45607

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +40 -10
app.py CHANGED
@@ -5,6 +5,35 @@ from datasets import load_dataset
5
 
6
  from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
10
 
@@ -12,17 +41,17 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
- processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
16
 
17
- model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
18
  vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
 
20
- embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
21
- speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
22
 
23
 
24
  def translate(audio):
25
- outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
26
  return outputs["text"]
27
 
28
 
@@ -34,6 +63,8 @@ def synthesise(text):
34
 
35
  def speech_to_speech_translation(audio):
36
  translated_text = translate(audio)
 
 
37
  synthesised_speech = synthesise(translated_text)
38
  synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
39
  return 16000, synthesised_speech
@@ -42,8 +73,7 @@ def speech_to_speech_translation(audio):
42
  title = "Cascaded STST"
43
  description = """
44
  Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
45
- [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
46
-
47
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
48
  """
49
 
@@ -51,7 +81,7 @@ demo = gr.Blocks()
51
 
52
  mic_translate = gr.Interface(
53
  fn=speech_to_speech_translation,
54
- inputs=gr.Audio(source="microphone", type="filepath"),
55
  outputs=gr.Audio(label="Generated Speech", type="numpy"),
56
  title=title,
57
  description=description,
@@ -59,7 +89,7 @@ mic_translate = gr.Interface(
59
 
60
  file_translate = gr.Interface(
61
  fn=speech_to_speech_translation,
62
- inputs=gr.Audio(source="upload", type="filepath"),
63
  outputs=gr.Audio(label="Generated Speech", type="numpy"),
64
  examples=[["./example.wav"]],
65
  title=title,
@@ -69,4 +99,4 @@ file_translate = gr.Interface(
69
  with demo:
70
  gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
71
 
72
- demo.launch()
 
5
 
6
  from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
7
 
8
+ speaker_embedding_path = "./speaker_embedding.npy"
9
+
10
+ replacements = [
11
+ ("&", "og"),
12
+ ("\r", " "),
13
+ ("´", ""),
14
+ ("\\", ""),
15
+ ("¨", " "),
16
+ ("Å", "AA"),
17
+ ("Æ", "AE"),
18
+ ("É", "E"),
19
+ ("Ö", "OE"),
20
+ ("Ø", "OE"),
21
+ ("á", "a"),
22
+ ("ä", "ae"),
23
+ ("å", "aa"),
24
+ ("è", "e"),
25
+ ("î", "i"),
26
+ ("ô", "oe"),
27
+ ("ö", "oe"),
28
+ ("ø", "oe"),
29
+ ("ü", "y"),
30
+ ]
31
+
32
+
33
+ def replace_danish_letters(text):
34
+ for src, dst in replacements:
35
+ text = text.replace(src, dst)
36
+ return text
37
 
38
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
39
 
 
41
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
42
 
43
  # load text-to-speech checkpoint and speaker embeddings
44
+ processor = SpeechT5Processor.from_pretrained("JackismyShephard/speecht5_tts-finetuned-nst-da")
45
 
46
+ model = SpeechT5ForTextToSpeech.from_pretrained("JackismyShephard/speecht5_tts-finetuned-nst-da").to(device)
47
  vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
48
 
49
+ speaker_embedding = np.load(speaker_embedding_path)
50
+ speaker_embeddings = torch.tensor(speaker_embedding).unsqueeze(0)
51
 
52
 
53
  def translate(audio):
54
+ outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "da"})
55
  return outputs["text"]
56
 
57
 
 
63
 
64
  def speech_to_speech_translation(audio):
65
  translated_text = translate(audio)
66
+ translated_text = replace_danish_letters(translated_text)
67
+ print(translated_text)
68
  synthesised_speech = synthesise(translated_text)
69
  synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
70
  return 16000, synthesised_speech
 
73
  title = "Cascaded STST"
74
  description = """
75
  Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
76
+ [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model fine-tuned by [JackismyShephard](https://huggingface.co/JackismyShephard) for Danish for text-to-speech:
 
77
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
78
  """
79
 
 
81
 
82
  mic_translate = gr.Interface(
83
  fn=speech_to_speech_translation,
84
+ inputs=gr.Audio(sources=["microphone"], type="filepath"),
85
  outputs=gr.Audio(label="Generated Speech", type="numpy"),
86
  title=title,
87
  description=description,
 
89
 
90
  file_translate = gr.Interface(
91
  fn=speech_to_speech_translation,
92
+ inputs=gr.Audio(sources=["upload"], type="filepath"),
93
  outputs=gr.Audio(label="Generated Speech", type="numpy"),
94
  examples=[["./example.wav"]],
95
  title=title,
 
99
  with demo:
100
  gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
101
 
102
+ demo.launch()