Spaces:
Running
Running
import streamlit as st | |
import open_clip | |
import torch | |
from PIL import Image | |
import numpy as np | |
from transformers import pipeline | |
import chromadb | |
import logging | |
import io | |
import requests | |
from concurrent.futures import ThreadPoolExecutor | |
# ๋ก๊น ์ค์ | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
# Initialize session state | |
if 'image' not in st.session_state: | |
st.session_state.image = None | |
if 'detected_items' not in st.session_state: | |
st.session_state.detected_items = None | |
if 'selected_item_index' not in st.session_state: | |
st.session_state.selected_item_index = None | |
if 'upload_state' not in st.session_state: | |
st.session_state.upload_state = 'initial' | |
if 'search_clicked' not in st.session_state: | |
st.session_state.search_clicked = False | |
# Load models | |
def load_models(): | |
try: | |
# CLIP ๋ชจ๋ธ | |
model, _, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionSigLIP') | |
# ์ธ๊ทธ๋ฉํ ์ด์ ๋ชจ๋ธ | |
segmenter = pipeline(model="mattmdjaga/segformer_b2_clothes") | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
return model, preprocess_val, segmenter, device | |
except Exception as e: | |
logger.error(f"Error loading models: {e}") | |
raise | |
# ๋ชจ๋ธ ๋ก๋ | |
clip_model, preprocess_val, segmenter, device = load_models() | |
# ChromaDB ์ค์ | |
client = chromadb.PersistentClient(path="./clothesDB_11GmarketMusinsa") | |
collection = client.get_collection(name="clothes") | |
def extract_color_histogram(image, mask=None): | |
"""Extract color histogram from the image, considering the mask if provided""" | |
try: | |
img_array = np.array(image) | |
if mask is not None: | |
# Reshape mask to match image dimensions | |
mask = np.expand_dims(mask, axis=-1) # Add channel dimension | |
img_array = img_array * mask # Broadcasting will work correctly now | |
# Only consider pixels that are part of the clothing item | |
valid_pixels = img_array[mask[:,:,0] > 0] | |
else: | |
valid_pixels = img_array.reshape(-1, 3) | |
# Convert to HSV color space for better color representation | |
if len(valid_pixels) > 0: | |
# Reshape to proper dimensions for PIL Image | |
valid_pixels = valid_pixels.reshape(-1, 3) | |
img_hsv = Image.fromarray(valid_pixels.astype(np.uint8)).convert('HSV') | |
hsv_pixels = np.array(img_hsv) | |
# Calculate histogram for each HSV channel | |
h_hist = np.histogram(hsv_pixels[:,0], bins=8, range=(0, 256))[0] | |
s_hist = np.histogram(hsv_pixels[:,1], bins=8, range=(0, 256))[0] | |
v_hist = np.histogram(hsv_pixels[:,2], bins=8, range=(0, 256))[0] | |
# Normalize histograms | |
h_hist = h_hist / (h_hist.sum() + 1e-8) # Add small epsilon to avoid division by zero | |
s_hist = s_hist / (s_hist.sum() + 1e-8) | |
v_hist = v_hist / (v_hist.sum() + 1e-8) | |
return np.concatenate([h_hist, s_hist, v_hist]) | |
return np.zeros(24) # 8bins * 3channels = 24 features | |
except Exception as e: | |
logger.error(f"Color histogram extraction error: {e}") | |
return np.zeros(24) | |
def process_segmentation(image): | |
"""Segmentation processing""" | |
try: | |
# pipeline ์ถ๋ ฅ ๊ฒฐ๊ณผ ์ง์ ์ฒ๋ฆฌ | |
output = segmenter(image) | |
if not output or len(output) == 0: | |
logger.warning("No segments found in image") | |
return [] | |
processed_items = [] | |
for segment in output: | |
# ๊ธฐ๋ณธ๊ฐ์ ํฌํจํ์ฌ ๋์ ๋๋ฆฌ ์์ฑ | |
processed_segment = { | |
'label': segment.get('label', 'Unknown'), | |
'score': segment.get('score', 1.0), # score๊ฐ ์์ผ๋ฉด 1.0์ ๊ธฐ๋ณธ๊ฐ์ผ๋ก ์ฌ์ฉ | |
'mask': None | |
} | |
mask = segment.get('mask') | |
if mask is not None: | |
# ๋ง์คํฌ๊ฐ numpy array๊ฐ ์๋ ๊ฒฝ์ฐ ๋ณํ | |
if not isinstance(mask, np.ndarray): | |
mask = np.array(mask) | |
# ๋ง์คํฌ๊ฐ 2D๊ฐ ์๋ ๊ฒฝ์ฐ ์ฒซ ๋ฒ์งธ ์ฑ๋ ์ฌ์ฉ | |
if len(mask.shape) > 2: | |
mask = mask[:, :, 0] | |
# bool ๋ง์คํฌ๋ฅผ float๋ก ๋ณํ | |
processed_segment['mask'] = mask.astype(float) | |
else: | |
logger.warning(f"No mask found for segment with label {processed_segment['label']}") | |
continue # ๋ง์คํฌ๊ฐ ์๋ ์ธ๊ทธ๋จผํธ๋ ๊ฑด๋๋ | |
processed_items.append(processed_segment) | |
logger.info(f"Successfully processed {len(processed_items)} segments") | |
return processed_items | |
except Exception as e: | |
logger.error(f"Segmentation error: {str(e)}") | |
import traceback | |
logger.error(traceback.format_exc()) | |
return [] | |
def extract_features(image, mask=None): | |
"""Extract both CLIP features and color features with segmentation mask""" | |
try: | |
# Extract CLIP features | |
if mask is not None: | |
img_array = np.array(image) | |
mask = np.expand_dims(mask, axis=-1) | |
masked_img = img_array * mask | |
masked_img[mask[:,:,0] == 0] = 255 # Set background to white | |
image = Image.fromarray(masked_img.astype(np.uint8)) | |
image_tensor = preprocess_val(image).unsqueeze(0).to(device) | |
with torch.no_grad(): | |
clip_features = clip_model.encode_image(image_tensor) | |
clip_features /= clip_features.norm(dim=-1, keepdim=True) | |
clip_features = clip_features.cpu().numpy().flatten() | |
# Extract color features | |
color_features = extract_color_histogram(image, mask) | |
# CLIP features are 768-dimensional, so we'll resize color features | |
# to maintain the same total dimensionality | |
clip_features = clip_features[:744] # Trim CLIP features to make room for color | |
# Normalize features | |
clip_features_normalized = clip_features / (np.linalg.norm(clip_features) + 1e-8) | |
color_features_normalized = color_features / (np.linalg.norm(color_features) + 1e-8) | |
# Adjust weights (total should be 768 to match collection dimensionality) | |
clip_weight = 0.7 | |
color_weight = 0.3 | |
combined_features = np.zeros(768) # Initialize with zeros | |
combined_features[:744] = clip_features_normalized * clip_weight # First 744 dimensions for CLIP | |
combined_features[744:] = color_features_normalized * color_weight # Last 24 dimensions for color | |
# Ensure final normalization | |
combined_features = combined_features / (np.linalg.norm(combined_features) + 1e-8) | |
return combined_features | |
except Exception as e: | |
logger.error(f"Feature extraction error: {e}") | |
raise | |
def download_and_process_image(image_url, metadata_id): | |
"""Download image from URL and apply segmentation""" | |
try: | |
response = requests.get(image_url, timeout=10) | |
if response.status_code != 200: | |
logger.error(f"Failed to download image {metadata_id}: HTTP {response.status_code}") | |
return None | |
image = Image.open(io.BytesIO(response.content)).convert('RGB') | |
logger.info(f"Successfully downloaded image {metadata_id}") | |
processed_items = process_segmentation(image) | |
if processed_items and len(processed_items) > 0: | |
# ๊ฐ์ฅ ํฐ ์ธ๊ทธ๋จผํธ์ ๋ง์คํฌ ์ฌ์ฉ | |
largest_mask = max(processed_items, key=lambda x: np.sum(x['mask']))['mask'] | |
features = extract_features(image, largest_mask) | |
logger.info(f"Successfully extracted features for image {metadata_id}") | |
return features | |
logger.warning(f"No valid mask found for image {metadata_id}") | |
return None | |
except Exception as e: | |
logger.error(f"Error processing image {metadata_id}: {str(e)}") | |
import traceback | |
logger.error(traceback.format_exc()) | |
return None | |
def update_db_with_segmentation(): | |
"""DB์ ๋ชจ๋ ์ด๋ฏธ์ง์ ๋ํด segmentation์ ์ ์ฉํ๊ณ feature๋ฅผ ์ ๋ฐ์ดํธ""" | |
try: | |
logger.info("Starting database update with segmentation and color features") | |
# ์๋ก์ด collection ์์ฑ | |
try: | |
client.delete_collection("clothes_segmented") | |
logger.info("Deleted existing segmented collection") | |
except: | |
logger.info("No existing segmented collection to delete") | |
new_collection = client.create_collection( | |
name="clothes_segmented", | |
metadata={"description": "Clothes collection with segmentation and color features"} | |
) | |
logger.info("Created new segmented collection") | |
# ๊ธฐ์กด collection์์ ๋ฉํ๋ฐ์ดํฐ๋ง ๊ฐ์ ธ์ค๊ธฐ | |
try: | |
all_items = collection.get(include=['metadatas']) | |
total_items = len(all_items['metadatas']) | |
logger.info(f"Found {total_items} items in database") | |
except Exception as e: | |
logger.error(f"Error getting items from collection: {str(e)}") | |
all_items = {'metadatas': []} | |
total_items = 0 | |
# ์งํ ์ํฉ ํ์๋ฅผ ์ํ progress bar | |
progress_bar = st.progress(0) | |
status_text = st.empty() | |
successful_updates = 0 | |
failed_updates = 0 | |
with ThreadPoolExecutor(max_workers=4) as executor: | |
futures = [] | |
# ์ด๋ฏธ์ง URL์ด ์๋ ํญ๋ชฉ๋ง ์ฒ๋ฆฌ | |
valid_items = [m for m in all_items['metadatas'] if 'image_url' in m] | |
for metadata in valid_items: | |
future = executor.submit( | |
download_and_process_image, | |
metadata['image_url'], | |
metadata.get('id', 'unknown') | |
) | |
futures.append((metadata, future)) | |
# ๊ฒฐ๊ณผ ์ฒ๋ฆฌ ๋ฐ ์ DB์ ์ ์ฅ | |
for idx, (metadata, future) in enumerate(futures): | |
try: | |
new_features = future.result() | |
if new_features is not None: | |
item_id = metadata.get('id', str(hash(metadata['image_url']))) | |
try: | |
new_collection.add( | |
embeddings=[new_features.tolist()], | |
metadatas=[metadata], | |
ids=[item_id] | |
) | |
successful_updates += 1 | |
logger.info(f"Successfully added item {item_id}") | |
except Exception as e: | |
logger.error(f"Error adding item to new collection: {str(e)}") | |
failed_updates += 1 | |
else: | |
failed_updates += 1 | |
# ์งํ ์ํฉ ์ ๋ฐ์ดํธ | |
progress = (idx + 1) / len(futures) | |
progress_bar.progress(progress) | |
status_text.text(f"Processing: {idx + 1}/{len(futures)} items. Success: {successful_updates}, Failed: {failed_updates}") | |
except Exception as e: | |
logger.error(f"Error processing item: {str(e)}") | |
failed_updates += 1 | |
continue | |
# ์ต์ข ๊ฒฐ๊ณผ ํ์ | |
status_text.text(f"Update completed. Successfully processed: {successful_updates}, Failed: {failed_updates}") | |
logger.info(f"Database update completed. Successful: {successful_updates}, Failed: {failed_updates}") | |
# ์ฑ๊ณต์ ์ผ๋ก ์ฒ๋ฆฌ๋ ํญ๋ชฉ์ด ์๋์ง ํ์ธ | |
if successful_updates > 0: | |
return True | |
else: | |
logger.error("No items were successfully processed") | |
return False | |
except Exception as e: | |
logger.error(f"Database update error: {str(e)}") | |
import traceback | |
logger.error(traceback.format_exc()) | |
return False | |
def search_similar_items(features, top_k=10): | |
"""Search similar items using combined features""" | |
try: | |
# ์ธ๊ทธ๋ฉํ ์ด์ ์ด ์ ์ฉ๋ collection์ด ์๋์ง ํ์ธ | |
try: | |
search_collection = client.get_collection("clothes_segmented") | |
logger.info("Using segmented collection for search") | |
except: | |
# ์์ผ๋ฉด ๊ธฐ์กด collection ์ฌ์ฉ | |
search_collection = collection | |
logger.info("Using original collection for search") | |
results = search_collection.query( | |
query_embeddings=[features.tolist()], | |
n_results=top_k, | |
include=['metadatas', 'scores'] | |
) | |
if not results or not results['metadatas'] or not results['scores']: | |
logger.warning("No results returned from ChromaDB") | |
return [] | |
similar_items = [] | |
for metadata, distance in zip(results['metadatas'][0], results['scores'][0]): | |
try: | |
similarity_score = distance | |
item_data = metadata.copy() | |
item_data['similarity_score'] = similarity_score | |
similar_items.append(item_data) | |
except Exception as e: | |
logger.error(f"Error processing search result: {str(e)}") | |
continue | |
similar_items.sort(key=lambda x: x['similarity_score'], reverse=True) | |
return similar_items | |
except Exception as e: | |
logger.error(f"Search error: {str(e)}") | |
return [] | |
def show_similar_items(similar_items): | |
"""Display similar items in a structured format with similarity scores""" | |
if not similar_items: | |
st.warning("No similar items found.") | |
return | |
st.subheader("Similar Items:") | |
# ๊ฒฐ๊ณผ๋ฅผ 2์ด๋ก ํ์ | |
items_per_row = 2 | |
for i in range(0, len(similar_items), items_per_row): | |
cols = st.columns(items_per_row) | |
for j, col in enumerate(cols): | |
if i + j < len(similar_items): | |
item = similar_items[i + j] | |
with col: | |
try: | |
if 'image_url' in item: | |
st.image(item['image_url'], use_column_width=True) | |
# ์ ์ฌ๋ ์ ์๋ฅผ ํผ์ผํธ๋ก ํ์ | |
similarity_percent = item['similarity_score'] | |
st.markdown(f"**Similarity: {similarity_percent:.1f}%**") | |
st.write(f"Brand: {item.get('brand', 'Unknown')}") | |
name = item.get('name', 'Unknown') | |
if len(name) > 50: # ๊ธด ์ด๋ฆ์ ์ค์ | |
name = name[:47] + "..." | |
st.write(f"Name: {name}") | |
# ๊ฐ๊ฒฉ ์ ๋ณด ํ์ | |
price = item.get('price', 0) | |
if isinstance(price, (int, float)): | |
st.write(f"Price: {price:,}์") | |
else: | |
st.write(f"Price: {price}") | |
# ํ ์ธ ์ ๋ณด๊ฐ ์๋ ๊ฒฝ์ฐ | |
if 'discount' in item and item['discount']: | |
st.write(f"Discount: {item['discount']}%") | |
if 'original_price' in item: | |
st.write(f"Original: {item['original_price']:,}์") | |
st.divider() # ๊ตฌ๋ถ์ ์ถ๊ฐ | |
except Exception as e: | |
logger.error(f"Error displaying item: {e}") | |
st.error("Error displaying this item") | |
def process_search(image, mask, num_results): | |
"""์ ์ฌ ์์ดํ ๊ฒ์ ์ฒ๋ฆฌ""" | |
try: | |
with st.spinner("Extracting features..."): | |
features = extract_features(image, mask) | |
with st.spinner("Finding similar items..."): | |
similar_items = search_similar_items(features, top_k=num_results) | |
return similar_items | |
except Exception as e: | |
logger.error(f"Search processing error: {e}") | |
return None | |
def handle_file_upload(): | |
if st.session_state.uploaded_file is not None: | |
image = Image.open(st.session_state.uploaded_file).convert('RGB') | |
st.session_state.image = image | |
st.session_state.upload_state = 'image_uploaded' | |
st.rerun() | |
def handle_detection(): | |
if st.session_state.image is not None: | |
detected_items = process_segmentation(st.session_state.image) | |
st.session_state.detected_items = detected_items | |
st.session_state.upload_state = 'items_detected' | |
st.rerun() | |
def handle_search(): | |
st.session_state.search_clicked = True | |
def main(): | |
st.title("Fashion Search App") | |
# Admin controls in sidebar | |
st.sidebar.title("Admin Controls") | |
if st.sidebar.checkbox("Show Admin Interface"): | |
# Admin interface ๊ตฌํ (ํ์ํ ๊ฒฝ์ฐ) | |
st.sidebar.warning("Admin interface is not implemented yet.") | |
st.divider() | |
# ํ์ผ ์ ๋ก๋ | |
if st.session_state.upload_state == 'initial': | |
uploaded_file = st.file_uploader("Upload an image", type=['png', 'jpg', 'jpeg'], | |
key='uploaded_file', on_change=handle_file_upload) | |
# ์ด๋ฏธ์ง๊ฐ ์ ๋ก๋๋ ์ํ | |
if st.session_state.image is not None: | |
st.image(st.session_state.image, caption="Uploaded Image", use_column_width=True) | |
if st.session_state.detected_items is None: | |
if st.button("Detect Items", key='detect_button', on_click=handle_detection): | |
pass | |
# ๊ฒ์ถ๋ ์์ดํ ํ์ | |
if st.session_state.detected_items is not None and len(st.session_state.detected_items) > 0: | |
# ๊ฐ์ง๋ ์์ดํ ๋ค์ 2์ด๋ก ํ์ | |
cols = st.columns(2) | |
for idx, item in enumerate(st.session_state.detected_items): | |
with cols[idx % 2]: | |
try: | |
if item.get('mask') is not None: | |
masked_img = np.array(st.session_state.image) * np.expand_dims(item['mask'], axis=2) | |
st.image(masked_img.astype(np.uint8), caption=f"Detected {item.get('label', 'Unknown')}") | |
st.write(f"Item {idx + 1}: {item.get('label', 'Unknown')}") | |
# score ๊ฐ์ด ์๊ณ ์ซ์์ธ ๊ฒฝ์ฐ์๋ง ํ์ | |
score = item.get('score') | |
if score is not None and isinstance(score, (int, float)): | |
st.write(f"Confidence: {score*100:.1f}%") | |
else: | |
st.write("Confidence: N/A") | |
except Exception as e: | |
logger.error(f"Error displaying item {idx}: {str(e)}") | |
st.error(f"Error displaying item {idx}") | |
valid_items = [i for i in range(len(st.session_state.detected_items)) | |
if st.session_state.detected_items[i].get('mask') is not None] | |
if not valid_items: | |
st.warning("No valid items detected for search.") | |
return | |
# ์์ดํ ์ ํ | |
selected_idx = st.selectbox( | |
"Select item to search:", | |
valid_items, | |
format_func=lambda i: f"{st.session_state.detected_items[i].get('label', 'Unknown')}", | |
key='item_selector' | |
) | |
# ๊ฒ์ ์ปจํธ๋กค | |
search_col1, search_col2 = st.columns([1, 2]) | |
with search_col1: | |
search_clicked = st.button("Search Similar Items", | |
key='search_button', | |
type="primary") | |
with search_col2: | |
num_results = st.slider("Number of results:", | |
min_value=1, | |
max_value=20, | |
value=5, | |
key='num_results') | |
# ๊ฒ์ ๊ฒฐ๊ณผ ์ฒ๋ฆฌ | |
if search_clicked or st.session_state.get('search_clicked', False): | |
st.session_state.search_clicked = True | |
selected_item = st.session_state.detected_items[selected_idx] | |
if selected_item.get('mask') is None: | |
st.error("Selected item has no valid mask for search.") | |
return | |
# ๊ฒ์ ๊ฒฐ๊ณผ๋ฅผ ์ธ์ ์ํ์ ์ ์ฅ | |
if 'search_results' not in st.session_state: | |
similar_items = process_search(st.session_state.image, selected_item['mask'], num_results) | |
st.session_state.search_results = similar_items | |
# ์ ์ฅ๋ ๊ฒ์ ๊ฒฐ๊ณผ ํ์ | |
if st.session_state.search_results: | |
show_similar_items(st.session_state.search_results) | |
else: | |
st.warning("No similar items found.") | |
# ์ ๊ฒ์ ๋ฒํผ | |
if st.button("Start New Search", key='new_search'): | |
# ๋ชจ๋ ์ํ ์ด๊ธฐํ | |
for key in list(st.session_state.keys()): | |
del st.session_state[key] | |
st.rerun() | |
if __name__ == "__main__": | |
main() |