leedoming commited on
Commit
c585644
·
verified ·
1 Parent(s): 7527ae0

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +218 -0
app.py ADDED
@@ -0,0 +1,218 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import open_clip
3
+ import torch
4
+ import requests
5
+ from PIL import Image
6
+ from io import BytesIO
7
+ import time
8
+ import json
9
+ import numpy as np
10
+ import cv2
11
+ import chromadb
12
+ from transformers import SegformerForSemanticSegmentation, SegformerImageProcessor
13
+
14
+ # Load CLIP model and tokenizer
15
+ @st.cache_resource
16
+ def load_clip_model():
17
+ model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionSigLIP')
18
+ tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionSigLIP')
19
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
20
+ model.to(device)
21
+ return model, preprocess_val, tokenizer, device
22
+
23
+ clip_model, preprocess_val, tokenizer, device = load_clip_model()
24
+
25
+ # Load SegFormer model
26
+ @st.cache_resource
27
+ def load_segformer_model():
28
+ model = SegformerForSemanticSegmentation.from_pretrained("mattmdjaga/segformer_b2_clothes")
29
+ processor = SegformerImageProcessor.from_pretrained("mattmdjaga/segformer_b2_clothes")
30
+ return model, processor
31
+
32
+ segformer_model, segformer_processor = load_segformer_model()
33
+
34
+ # Helper functions
35
+ def load_image_from_url(url, max_retries=3):
36
+ for attempt in range(max_retries):
37
+ try:
38
+ response = requests.get(url, timeout=10)
39
+ response.raise_for_status()
40
+ img = Image.open(BytesIO(response.content)).convert('RGB')
41
+ return img
42
+ except (requests.RequestException, Image.UnidentifiedImageError) as e:
43
+ if attempt < max_retries - 1:
44
+ time.sleep(1)
45
+ else:
46
+ return None
47
+
48
+ #Load chromaDB
49
+ client = chromadb.PersistentClient(path="./clothesDB")
50
+ collection = client.get_collection(name="clothes_items_ver3")
51
+
52
+ def get_image_embedding(image):
53
+ image_tensor = preprocess_val(image).unsqueeze(0).to(device)
54
+ with torch.no_grad():
55
+ image_features = clip_model.encode_image(image_tensor)
56
+ image_features /= image_features.norm(dim=-1, keepdim=True)
57
+ return image_features.cpu().numpy()
58
+
59
+ def get_text_embedding(text):
60
+ text_tokens = tokenizer([text]).to(device)
61
+ with torch.no_grad():
62
+ text_features = clip_model.encode_text(text_tokens)
63
+ text_features /= text_features.norm(dim=-1, keepdim=True)
64
+ return text_features.cpu().numpy()
65
+
66
+ def get_all_embeddings_from_collection(collection):
67
+ all_embeddings = collection.get(include=['embeddings'])['embeddings']
68
+ return np.array(all_embeddings)
69
+
70
+ def get_metadata_from_ids(collection, ids):
71
+ results = collection.get(ids=ids)
72
+ return results['metadatas']
73
+
74
+ def find_similar_images(query_embedding, collection, top_k=5):
75
+ database_embeddings = get_all_embeddings_from_collection(collection)
76
+ similarities = np.dot(database_embeddings, query_embedding.T).squeeze()
77
+ top_indices = np.argsort(similarities)[::-1][:top_k]
78
+
79
+ all_data = collection.get(include=['metadatas'])['metadatas']
80
+
81
+ top_metadatas = [all_data[idx] for idx in top_indices]
82
+
83
+ results = []
84
+ for idx, metadata in enumerate(top_metadatas):
85
+ results.append({
86
+ 'info': metadata,
87
+ 'similarity': similarities[top_indices[idx]]
88
+ })
89
+ return results
90
+
91
+ def segment_clothing(image):
92
+ inputs = segformer_processor(images=image, return_tensors="pt")
93
+ outputs = segformer_model(**inputs)
94
+ logits = outputs.logits.squeeze()
95
+ predicted_mask = logits.argmax(dim=0).numpy()
96
+
97
+ categories = segformer_model.config.id2label
98
+ segmented_items = []
99
+
100
+ for category_id, category_name in categories.items():
101
+ if category_id in predicted_mask:
102
+ mask = (predicted_mask == category_id).astype(np.uint8)
103
+ contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
104
+ if contours:
105
+ x, y, w, h = cv2.boundingRect(max(contours, key=cv2.contourArea))
106
+ segmented_items.append({
107
+ 'category': category_name,
108
+ 'bbox': [x, y, x+w, y+h],
109
+ 'mask': mask
110
+ })
111
+
112
+ return segmented_items
113
+
114
+ def crop_image(image, bbox):
115
+ return image.crop((bbox[0], bbox[1], bbox[2], bbox[3]))
116
+
117
+ # Streamlit app
118
+ st.title("Advanced Fashion Search App")
119
+
120
+ # Initialize session state
121
+ if 'step' not in st.session_state:
122
+ st.session_state.step = 'input'
123
+ if 'query_image_url' not in st.session_state:
124
+ st.session_state.query_image_url = ''
125
+ if 'segmentations' not in st.session_state:
126
+ st.session_state.segmentations = []
127
+ if 'selected_category' not in st.session_state:
128
+ st.session_state.selected_category = None
129
+
130
+ # Step-by-step processing
131
+ if st.session_state.step == 'input':
132
+ st.session_state.query_image_url = st.text_input("Enter image URL:", st.session_state.query_image_url)
133
+ if st.button("Segment Clothing"):
134
+ if st.session_state.query_image_url:
135
+ query_image = load_image_from_url(st.session_state.query_image_url)
136
+ if query_image is not None:
137
+ st.session_state.query_image = query_image
138
+ st.session_state.segmentations = segment_clothing(query_image)
139
+ if st.session_state.segmentations:
140
+ st.session_state.step = 'select_category'
141
+ else:
142
+ st.warning("No clothing items segmented in the image.")
143
+ else:
144
+ st.error("Failed to load the image. Please try another URL.")
145
+ else:
146
+ st.warning("Please enter an image URL.")
147
+
148
+ elif st.session_state.step == 'select_category':
149
+ st.image(st.session_state.query_image, caption="Query Image", use_column_width=True)
150
+ st.subheader("Segmented Clothing Items:")
151
+
152
+ for segmentation in st.session_state.segmentations:
153
+ col1, col2 = st.columns([1, 3])
154
+ with col1:
155
+ st.write(f"{segmentation['category']}")
156
+ with col2:
157
+ cropped_image = crop_image(st.session_state.query_image, segmentation['bbox'])
158
+ st.image(cropped_image, caption=segmentation['category'], use_column_width=True)
159
+
160
+ options = [s['category'] for s in st.session_state.segmentations]
161
+ selected_option = st.selectbox("Select a category to search:", options)
162
+
163
+ if st.button("Search Similar Items"):
164
+ st.session_state.selected_category = selected_option
165
+ st.session_state.step = 'show_results'
166
+
167
+ elif st.session_state.step == 'show_results':
168
+ st.image(st.session_state.query_image, caption="Query Image", use_column_width=True)
169
+ selected_segmentation = next(s for s in st.session_state.segmentations
170
+ if s['category'] == st.session_state.selected_category)
171
+ cropped_image = crop_image(st.session_state.query_image, selected_segmentation['bbox'])
172
+ st.image(cropped_image, caption="Cropped Image", use_column_width=True)
173
+ query_embedding = get_image_embedding(cropped_image)
174
+ similar_images = find_similar_images(query_embedding, collection)
175
+
176
+ st.subheader("Similar Items:")
177
+ for img in similar_images:
178
+ col1, col2 = st.columns(2)
179
+ with col1:
180
+ st.image(img['info']['image_url'], use_column_width=True)
181
+ with col2:
182
+ st.write(f"Name: {img['info']['name']}")
183
+ st.write(f"Brand: {img['info']['brand']}")
184
+ category = img['info'].get('category')
185
+ if category:
186
+ st.write(f"Category: {category}")
187
+ st.write(f"Price: {img['info']['price']}")
188
+ st.write(f"Discount: {img['info']['discount']}%")
189
+ st.write(f"Similarity: {img['similarity']:.2f}")
190
+
191
+ if st.button("Start New Search"):
192
+ st.session_state.step = 'input'
193
+ st.session_state.query_image_url = ''
194
+ st.session_state.segmentations = []
195
+ st.session_state.selected_category = None
196
+
197
+ else: # Text search
198
+ query_text = st.text_input("Enter search text:")
199
+ if st.button("Search by Text"):
200
+ if query_text:
201
+ text_embedding = get_text_embedding(query_text)
202
+ similar_images = find_similar_images(text_embedding, collection)
203
+ st.subheader("Similar Items:")
204
+ for img in similar_images:
205
+ col1, col2 = st.columns(2)
206
+ with col1:
207
+ st.image(img['info']['image_url'], use_column_width=True)
208
+ with col2:
209
+ st.write(f"Name: {img['info']['name']}")
210
+ st.write(f"Brand: {img['info']['brand']}")
211
+ category = img['info'].get('category')
212
+ if category:
213
+ st.write(f"Category: {category}")
214
+ st.write(f"Price: {img['info']['price']}")
215
+ st.write(f"Discount: {img['info']['discount']}%")
216
+ st.write(f"Similarity: {img['similarity']:.2f}")
217
+ else:
218
+ st.warning("Please enter a search text.")