File size: 8,711 Bytes
543b03f
 
 
 
 
 
 
 
 
 
d77b7a4
f388a49
054c8f7
543b03f
 
 
 
 
 
 
 
 
 
 
bc3fea2
543b03f
f388a49
 
543b03f
f388a49
bc3fea2
 
f388a49
543b03f
 
 
 
 
 
 
 
 
 
 
 
 
 
bc3fea2
d77b7a4
 
 
543b03f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d77b7a4
 
 
 
 
 
 
 
 
 
543b03f
 
d77b7a4
 
 
 
 
543b03f
d77b7a4
543b03f
d77b7a4
 
543b03f
 
 
 
f388a49
 
bc3fea2
f388a49
 
 
bc3fea2
543b03f
f388a49
 
 
 
543b03f
 
f388a49
 
543b03f
 
 
 
 
 
bc3fea2
 
 
 
b757e27
 
 
 
 
 
 
 
 
bc3fea2
b757e27
 
543b03f
b757e27
 
543b03f
b757e27
 
 
 
543b03f
 
 
 
 
 
 
b757e27
 
 
f43a9e6
 
 
 
 
 
 
 
 
b757e27
 
f43a9e6
b757e27
 
 
 
 
 
 
 
 
 
 
d77b7a4
b757e27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce67f34
bc3fea2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import streamlit as st
import open_clip
import torch
import requests
from PIL import Image
from io import BytesIO
import time
import json
import numpy as np
import cv2
import chromadb
from ultralytics import YOLO

# Load CLIP model and tokenizer
@st.cache_resource
def load_clip_model():
    model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionSigLIP')
    tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionSigLIP')
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model.to(device)
    return model, preprocess_val, tokenizer, device

clip_model, preprocess_val, tokenizer, device = load_clip_model()

# Load YOLOS model
@st.cache_resource
def load_yolo_model():
    return YOLO("./best.pt")

yolo_model = load_yolo_model()

# Define the categories
#CATS = ['shirt, blouse', 'top, t-shirt, sweatshirt', 'sweater', 'cardigan', 'jacket', 'vest', 'pants', 'shorts', 'skirt', 'coat', 'dress', 'jumpsuit', 'cape', 'glasses', 'hat', 'glove', 'shoe', 'bag', 'wallet', 'umbrella', 'hood', 'collar', 'lapel', 'epaulette', 'applique', 'bead', 'bow', 'flower', 'fringe', 'ribbon', 'rivet', 'ruffle', 'sequin', 'tassel']

# Helper functions
def load_image_from_url(url, max_retries=3):
    for attempt in range(max_retries):
        try:
            response = requests.get(url, timeout=10)
            response.raise_for_status()
            img = Image.open(BytesIO(response.content)).convert('RGB')
            return img
        except (requests.RequestException, Image.UnidentifiedImageError) as e:
            if attempt < max_retries - 1:
                time.sleep(1)
            else:
                return None

#Load chromaDB
client = chromadb.PersistentClient(path="./clothesDB")
collection = client.get_collection(name="fashion_items_ver2")

def get_image_embedding(image):
    image_tensor = preprocess_val(image).unsqueeze(0).to(device)
    with torch.no_grad():
        image_features = clip_model.encode_image(image_tensor)
        image_features /= image_features.norm(dim=-1, keepdim=True)
    return image_features.cpu().numpy()

def get_text_embedding(text):
    text_tokens = tokenizer([text]).to(device)
    with torch.no_grad():
        text_features = clip_model.encode_text(text_tokens)
        text_features /= text_features.norm(dim=-1, keepdim=True)
    return text_features.cpu().numpy()

def get_all_embeddings_from_collection(collection):
    all_embeddings = collection.get(include=['embeddings'])['embeddings']
    return np.array(all_embeddings)

def get_metadata_from_ids(collection, ids):
    results = collection.get(ids=ids)
    return results['metadatas']
    
def find_similar_images(query_embedding, collection, top_k=5):
    database_embeddings = get_all_embeddings_from_collection(collection)
    similarities = np.dot(database_embeddings, query_embedding.T).squeeze()
    top_indices = np.argsort(similarities)[::-1][:top_k]
    
    all_data = collection.get(include=['metadatas'])['metadatas']
    
    top_metadatas = [all_data[idx] for idx in top_indices]
    
    results = []
    for idx, metadata in enumerate(top_metadatas):
        results.append({
            'info': metadata,
            'similarity': similarities[top_indices[idx]]
        })
    return results

def detect_clothing(image):
    #inputs = yolos_processor(images=image, return_tensors="pt")
    #outputs = yolos_model(**inputs)
    
    #target_sizes = torch.tensor([image.size[::-1]])
    results = yolo_model(image)
    detections = results[0].boxes.data.cpu().numpy()
    
    categories = []
    for detection in detections:
        x1, y1, x2, y2, conf, cls = detection
        category = yolo_model.names[int(cls)]
        if category in ['sunglass','hat','jacket','shirt','pants','shorts','skirt','dress','bag','shoe']:
            categories.append({
                'category': category,
                'bbox': [int(x1), int(y1), int(x2), int(y2)],
                'confidence': conf
            })
    return categories

def crop_image(image, bbox):
    return image.crop((bbox[0], bbox[1], bbox[2], bbox[3]))

# Streamlit app
st.title("Advanced Fashion Search App")

# Initialize session state
if 'step' not in st.session_state:
    st.session_state.step = 'input'
if 'query_image_url' not in st.session_state:
    st.session_state.query_image_url = ''
if 'detections' not in st.session_state:
    st.session_state.detections = []
if 'selected_category' not in st.session_state:
    st.session_state.selected_category = None

# Step-by-step processing
if st.session_state.step == 'input':
    st.session_state.query_image_url = st.text_input("Enter image URL:", st.session_state.query_image_url)
    if st.button("Detect Clothing"):
        if st.session_state.query_image_url:
            query_image = load_image_from_url(st.session_state.query_image_url)
            if query_image is not None:
                st.session_state.query_image = query_image
                st.session_state.detections = detect_clothing(query_image)
                if st.session_state.detections:
                    st.session_state.step = 'select_category'
                else:
                    st.warning("No clothing items detected in the image.")
            else:
                st.error("Failed to load the image. Please try another URL.")
        else:
            st.warning("Please enter an image URL.")

elif st.session_state.step == 'select_category':
    st.image(st.session_state.query_image, caption="Query Image", use_column_width=True)
    st.subheader("Detected Clothing Items:")
    
    for detection in st.session_state.detections:
        col1, col2 = st.columns([1, 3])
        with col1:
            st.write(f"{detection['category']} (Confidence: {detection['confidence']:.2f})")
        with col2:
            cropped_image = crop_image(st.session_state.query_image, detection['bbox'])
            st.image(cropped_image, caption=detection['category'], use_column_width=True)
    
    options = [f"{d['category']} (Confidence: {d['confidence']:.2f})" for d in st.session_state.detections]
    selected_option = st.selectbox("Select a category to search:", options)
    
    if st.button("Search Similar Items"):
        st.session_state.selected_category = selected_option
        st.session_state.step = 'show_results'

elif st.session_state.step == 'show_results':
    st.image(st.session_state.query_image, caption="Query Image", use_column_width=True)
    selected_detection = next(d for d in st.session_state.detections 
                              if f"{d['category']} (Confidence: {d['confidence']:.2f})" == st.session_state.selected_category)
    cropped_image = crop_image(st.session_state.query_image, selected_detection['bbox'])
    st.image(cropped_image, caption="Cropped Image", use_column_width=True)
    query_embedding = get_image_embedding(cropped_image)
    similar_images = find_similar_images(query_embedding, collection)
    
    st.subheader("Similar Items:")
    for img in similar_images:
        col1, col2 = st.columns(2)
        with col1:
            st.image(img['info']['image_url'], use_column_width=True)
        with col2:
            st.write(f"Name: {img['info']['name']}")
            st.write(f"Brand: {img['info']['brand']}")
            st.write(f"Category: {img['info']['category']}")
            st.write(f"Price: {img['info']['price']}")
            st.write(f"Discount: {img['info']['discount']}%")
            st.write(f"Similarity: {img['similarity']:.2f}")
    
    if st.button("Start New Search"):
        st.session_state.step = 'input'
        st.session_state.query_image_url = ''
        st.session_state.detections = []
        st.session_state.selected_category = None

# Text search
st.sidebar.title("Text Search")
query_text = st.sidebar.text_input("Enter search text:")
if st.sidebar.button("Search by Text"):
    if query_text:
        text_embedding = get_text_embedding(query_text)
        similar_images = find_similar_images(text_embedding, collection)
        st.sidebar.subheader("Similar Items:")
        for img in similar_images:
            st.sidebar.image(img['info']['image_url'], use_column_width=True)
            st.sidebar.write(f"Name: {img['info']['name']}")
            st.sidebar.write(f"Brand: {img['info']['brand']}")
            st.sidebar.write(f"Category: {img['info']['category']}")
            st.sidebar.write(f"Price: {img['info']['price']}")
            st.sidebar.write(f"Discount: {img['info']['discount']}%")
            st.sidebar.write(f"Similarity: {img['similarity']:.2f}")
            st.sidebar.write("---")
    else:
        st.sidebar.warning("Please enter a search text.")