Spaces:
Runtime error
Runtime error
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
import numpy as np | |
import torch | |
TOP_N = 5 | |
def main(): | |
st.set_page_config( # Alternate names: setup_page, page, layout | |
layout="centered", # Can be "centered" or "wide". In the future also "dashboard", etc. | |
initial_sidebar_state="auto", # Can be "auto", "expanded", "collapsed" | |
page_title="Emoji-motion!", # String or None. Strings get appended with "• Streamlit". | |
page_icon=None, # String, anything supported by st.image, or None. | |
) | |
st.title('Emoji-motion!') | |
example_prompts = [ | |
"it's pretty depressing when u hit pan on ur favourite highlighter", | |
"After what just happened. In need to smoke.", | |
"I've never been happier. I'm laying awake as I watch @user sleep. Thanks for making me happy again, babe.", | |
"@user is the man", | |
"Поприветствуем моего нового читателя @user", | |
"сегодня у одной крутой бичи день рождения! @user поздравляю тебя с днем рождения! будь самой-самой счастливой,красота:* море любви тебе", | |
"Никогда не явствовала себя ужаснее, чем сейчас:( я просто раздавленна", | |
"Самое ужасное - это ожидание результатов", | |
"печально что заряд одинаково фигово держится(", | |
] | |
example = st.selectbox("Choose an example", example_prompts) | |
# Take the message which needs to be processed | |
message = st.text_area("...or paste some text to see the model's predictions", example) | |
# st.title(message) | |
st.text('') | |
models_to_choose = [ | |
"amazon-sagemaker-community/xlm-roberta-en-ru-emoji-v2", | |
"AlekseyDorkin/xlm-roberta-en-ru-emoji" | |
] | |
BASE_MODEL = st.selectbox("Choose a model", models_to_choose) | |
TOP_N = 5 | |
def preprocess(text): | |
new_text = [] | |
for t in text.split(" "): | |
t = '@user' if t.startswith('@') and len(t) > 1 else t | |
t = 'http' if t.startswith('http') else t | |
new_text.append(t) | |
return " ".join(new_text) | |
def load_model(): | |
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL) | |
model = AutoModelForSequenceClassification.from_pretrained(BASE_MODEL) | |
return model, tokenizer | |
def get_top_emojis(text, top_n=TOP_N): | |
model, tokenizer = load_model() | |
preprocessed = preprocess(text) | |
inputs = tokenizer(preprocessed, return_tensors="pt") | |
preds = model(**inputs).logits | |
scores = torch.nn.functional.softmax(preds, dim=-1).detach().numpy() | |
ranking = np.argsort(scores) | |
ranking = ranking.squeeze()[::-1][:top_n] | |
emojis = [model.config.id2label[i] for i in ranking] | |
return ', '.join(map(str, emojis)) | |
# Define function to run when submit is clicked | |
def submit(message): | |
if len(message) > 0: | |
st.header(get_top_emojis(message)) | |
else: | |
st.error("The text can't be empty") | |
# Run algo when submit button is clicked | |
if st.button('Submit'): | |
submit(message) | |
st.text('') | |
st.markdown( | |
'''<span style="color:blue; font-size:10px">App created by [@AlekseyDorkin](https://huggingface.co/AlekseyDorkin) | |
and [@akshay7](https://huggingface.co/akshay7)</span>''', | |
unsafe_allow_html=True, | |
) | |
if __name__ == "__main__": | |
main() |