Spaces:
Runtime error
Runtime error
leandrocarneiro
commited on
Upload 2 files
Browse files
app.py
CHANGED
@@ -56,16 +56,16 @@ with gr.Blocks(title='BotNews') as page:
|
|
56 |
with gr.Row():
|
57 |
output1 = gr.Textbox(label="Notícia gerada por IA", lines=25)
|
58 |
gr.Markdown("<hr>")
|
59 |
-
gr.Markdown("##
|
60 |
gr.Markdown(" ")
|
61 |
gr.Markdown("<b>Instrução:</b> Preencha abaixo com um comando para ser executado sobre a notícia (Por exemplo: 'Resuma em tópicos' ou 'Adicione um tom sarcástico').")
|
62 |
gr.Markdown(" ")
|
63 |
with gr.Row():
|
64 |
input6 = gr.Textbox(label="Ajustar a notícia com IA")
|
65 |
with gr.Row():
|
66 |
-
button2 = gr.Button("
|
67 |
with gr.Row():
|
68 |
-
output2 = gr.Textbox(label="
|
69 |
|
70 |
button1.click(call_generate_news, inputs=[input1, input2, input3, input4, input5], outputs=[output1])
|
71 |
button2.click(call_invoke_llm, inputs=[output1, input6, input5], outputs=[output2])
|
|
|
56 |
with gr.Row():
|
57 |
output1 = gr.Textbox(label="Notícia gerada por IA", lines=25)
|
58 |
gr.Markdown("<hr>")
|
59 |
+
gr.Markdown("## Ajustar a notícia com IA")
|
60 |
gr.Markdown(" ")
|
61 |
gr.Markdown("<b>Instrução:</b> Preencha abaixo com um comando para ser executado sobre a notícia (Por exemplo: 'Resuma em tópicos' ou 'Adicione um tom sarcástico').")
|
62 |
gr.Markdown(" ")
|
63 |
with gr.Row():
|
64 |
input6 = gr.Textbox(label="Ajustar a notícia com IA")
|
65 |
with gr.Row():
|
66 |
+
button2 = gr.Button("Ajustar notícia")
|
67 |
with gr.Row():
|
68 |
+
output2 = gr.Textbox(label="Notícia ajustada por IA", lines=25)
|
69 |
|
70 |
button1.click(call_generate_news, inputs=[input1, input2, input3, input4, input5], outputs=[output1])
|
71 |
button2.click(call_invoke_llm, inputs=[output1, input6, input5], outputs=[output2])
|
rag.py
CHANGED
@@ -4,6 +4,7 @@
|
|
4 |
#from langchain.embeddings import OpenAIEmbeddings
|
5 |
from langchain_openai import OpenAIEmbeddings
|
6 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
|
7 |
from langchain_community.vectorstores import Chroma
|
8 |
from langchain_community.document_loaders import DirectoryLoader
|
9 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
@@ -14,6 +15,7 @@ from langchain.memory import ConversationBufferMemory
|
|
14 |
from langchain.chains import ConversationalRetrievalChain
|
15 |
import os
|
16 |
import csv
|
|
|
17 |
|
18 |
def read_csv_to_dict(filename):
|
19 |
data_dict = {}
|
@@ -45,9 +47,14 @@ def generate_embeddings_and_vectorstore(path, model):
|
|
45 |
#print(docs)
|
46 |
if model == 'openai':
|
47 |
fc_embeddings = OpenAIEmbeddings(openai_api_key=os.environ['OPENAI_KEY'])
|
|
|
48 |
else:
|
49 |
-
fc_embeddings = HuggingFaceEmbeddings(model_name = 'intfloat/multilingual-e5-large-instruct')
|
50 |
-
|
|
|
|
|
|
|
|
|
51 |
print('total de docs no vectorstore=',len(vectorstore.get()['documents']))
|
52 |
|
53 |
return vectorstore
|
|
|
4 |
#from langchain.embeddings import OpenAIEmbeddings
|
5 |
from langchain_openai import OpenAIEmbeddings
|
6 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
7 |
+
from langchain_together.embeddings import TogetherEmbeddings
|
8 |
from langchain_community.vectorstores import Chroma
|
9 |
from langchain_community.document_loaders import DirectoryLoader
|
10 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
|
15 |
from langchain.chains import ConversationalRetrievalChain
|
16 |
import os
|
17 |
import csv
|
18 |
+
import time
|
19 |
|
20 |
def read_csv_to_dict(filename):
|
21 |
data_dict = {}
|
|
|
47 |
#print(docs)
|
48 |
if model == 'openai':
|
49 |
fc_embeddings = OpenAIEmbeddings(openai_api_key=os.environ['OPENAI_KEY'])
|
50 |
+
vectorstore = Chroma.from_documents(docs, fc_embeddings)
|
51 |
else:
|
52 |
+
#fc_embeddings = HuggingFaceEmbeddings(model_name = 'intfloat/multilingual-e5-large-instruct')
|
53 |
+
#vectorstore = Chroma.from_documents(docs, fc_embeddings)
|
54 |
+
fc_embeddings = TogetherEmbeddings(model = 'togethercomputer/m2-bert-80M-8k-retrieval', together_api_key = os.environ['TOGETHER_KEY'])
|
55 |
+
for doc in docs:
|
56 |
+
vectorstore = Chroma.from_documents(documents=[doc], embedding=fc_embeddings)
|
57 |
+
time.sleep(0.5)
|
58 |
print('total de docs no vectorstore=',len(vectorstore.get()['documents']))
|
59 |
|
60 |
return vectorstore
|