Spaces:
Running
Running
File size: 10,130 Bytes
4e15376 7ba18ce 550c464 7ba18ce 550c464 7ba18ce 4e15376 550c464 4e15376 550c464 7ba18ce 4e15376 a168116 550c464 4e15376 550c464 7ba18ce a168116 7ba18ce a168116 7ba18ce a168116 7ba18ce a168116 7ba18ce a168116 7ba18ce a168116 7ba18ce a168116 7ba18ce a168116 7ba18ce 550c464 a168116 7ba18ce 4e15376 550c464 4e15376 550c464 4e15376 550c464 4e15376 550c464 4e15376 7ba18ce 4e15376 550c464 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
import os
import streamlit as st
from llama_index.core import Settings, SimpleDirectoryReader, VectorStoreIndex, StorageContext
from llama_index.core.storage.docstore import SimpleDocumentStore
from llama_index.llms.ollama import Ollama
from llama_index.embeddings.ollama import OllamaEmbedding
from llama_index.core.node_parser import LangchainNodeParser
from langchain.text_splitter import RecursiveCharacterTextSplitter
from llama_index.core.storage.chat_store import SimpleChatStore
from llama_index.core.memory import ChatMemoryBuffer
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.core.chat_engine import CondensePlusContextChatEngine
from llama_index.retrievers.bm25 import BM25Retriever
from llama_index.core.retrievers import QueryFusionRetriever
from llama_index.vector_stores.chroma import ChromaVectorStore
import chromadb
import nest_asyncio
import os
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.llms.huggingface import HuggingFaceLLM
from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
from llama_index.core import Settings
from typing import List, Optional
from llama_index.core import PromptTemplate
import torch
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
import logging
import sys
from PIL import Image
#Configuração da imagem da aba
im = Image.open("pngegg.png")
st.set_page_config(page_title = "Chatbot Carômetro", page_icon=im, layout = "wide")
#Removido loop e adicionado os.makedirs
os.makedirs("bm25_retriever", exist_ok=True)
os.makedirs("chat_store", exist_ok=True)
os.makedirs("chroma_db", exist_ok=True)
os.makedirs("documentos", exist_ok=True)
os.makedirs("curadoria", exist_ok=True)
os.makedirs("chroma_db_curadoria", exist_ok=True)
# Configuração do Streamlit
st.sidebar.title("Configuração de LLM")
sidebar_option = st.sidebar.radio("Selecione o LLM", ["gpt-3.5-turbo", "NuExtract-1.5"])
# logo_url = 'app\logos\logo-sicoob.jpg'
# st.sidebar.image(logo_url)
import base64
#Configuração da imagem da sidebar
with open("sicoob-logo.png", "rb") as f:
data = base64.b64encode(f.read()).decode("utf-8")
st.sidebar.markdown(
f"""
<div style="display:table;margin-top:-80%;margin-left:0%;">
<img src="data:image/png;base64,{data}" width="250" height="70">
</div>
""",
unsafe_allow_html=True,
)
#if sidebar_option == "Ollama":
# Settings.llm = Ollama(model="llama3.2:latest", request_timeout=500.0, num_gpu=1)
# Settings.embed_model = OllamaEmbedding(model_name="nomic-embed-text:latest")
if sidebar_option == "gpt-3.5-turbo":
from llama_index.llms.openai import OpenAI
from llama_index.embeddings.openai import OpenAIEmbedding
Settings.llm = OpenAI(model="gpt-3.5-turbo")
Settings.embed_model = OpenAIEmbedding(model_name="text-embedding-ada-002")
elif sidebar_option == 'NuExtract-1.5':
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
#Embedding do huggingface
Settings.embed_model = HuggingFaceEmbedding(
model_name="BAAI/bge-small-en-v1.5"
)
#Carregamento do modelo local, descomentar o modelo desejado
llm = HuggingFaceLLM(
context_window=2048,
max_new_tokens=256,
generate_kwargs={"do_sample": False},
#query_wrapper_prompt=query_wrapper_prompt,
#model_name="Qwen/Qwen2.5-Coder-32B-Instruct",
#model_name="Qwen/Qwen2.5-14B-Instruct",
# model_name="meta-llama/Llama-3.2-3B",
#model_name="HuggingFaceH4/zephyr-7b-beta",
# model_name="meta-llama/Meta-Llama-3-8B",
model_name="numind/NuExtract-1.5",
#model_name="meta-llama/Llama-3.2-3B",
tokenizer_name="numind/NuExtract-1.5",
device_map="auto",
tokenizer_kwargs={"max_length": 2048},
# uncomment this if using CUDA to reduce memory usage
model_kwargs={"torch_dtype": torch.bfloat16},
)
chat = [
{"role": "user", "content": "Hello, how are you?"},
{"role": "assistant", "content": "I'm doing great. How can I help you today?"},
{"role": "user", "content": "I'd like to show off how chat templating works!"},
]
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("numind/NuExtract-1.5")
tokenizer.apply_chat_template(chat, tokenize=False)
Settings.chunk_size = 512
Settings.llm = llm
else:
raise Exception("Opção de LLM inválida!")
# Diretórios configurados pelo usuário
chat_store_path = os.path.join("chat_store", "chat_store.json")
documents_path = os.path.join("documentos")
chroma_storage_path = os.path.join("chroma_db") # Diretório para persistência do Chroma
chroma_storage_path_curadoria = os.path.join("chroma_db_curadoria") # Diretório para 'curadoria'
bm25_persist_path = os.path.join("bm25_retriever")
curadoria_path = os.path.join("curadoria")
# Configuração de leitura de documentos
documents = SimpleDirectoryReader(input_dir=documents_path).load_data()
# Configuração do Chroma e BM25 com persistência
docstore = SimpleDocumentStore()
docstore.add_documents(documents)
db = chromadb.PersistentClient(path=chroma_storage_path)
chroma_collection = db.get_or_create_collection("dense_vectors")
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
# Configuração do StorageContext
storage_context = StorageContext.from_defaults(
docstore=docstore, vector_store=vector_store
)
# Criação/Recarregamento do índice com embeddings
if os.path.exists(chroma_storage_path):
index = VectorStoreIndex.from_vector_store(vector_store)
else:
splitter = LangchainNodeParser(
RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=64)
)
index = VectorStoreIndex.from_documents(
documents, storage_context=storage_context, transformations=[splitter]
)
vector_store.persist()
# Criação/Recarregamento do BM25 Retriever
if os.path.exists(os.path.join(bm25_persist_path, "params.index.json")):
bm25_retriever = BM25Retriever.from_persist_dir(bm25_persist_path)
else:
bm25_retriever = BM25Retriever.from_defaults(
docstore=docstore,
similarity_top_k=2,
language="portuguese", # Idioma ajustado para seu caso
)
os.makedirs(bm25_persist_path, exist_ok=True)
bm25_retriever.persist(bm25_persist_path)
#Adicionado documentos na pasta curadoria, foi setado para 1200 o chunk pra receber pergunta, contexto e resposta
curadoria_documents = SimpleDirectoryReader(input_dir=curadoria_path).load_data()
curadoria_docstore = SimpleDocumentStore()
curadoria_docstore.add_documents(curadoria_documents)
db_curadoria = chromadb.PersistentClient(path=chroma_storage_path_curadoria)
chroma_collection_curadoria = db_curadoria.get_or_create_collection("dense_vectors_curadoria")
vector_store_curadoria = ChromaVectorStore(chroma_collection=chroma_collection_curadoria)
# Configuração do StorageContext para 'curadoria'
storage_context_curadoria = StorageContext.from_defaults(
docstore=curadoria_docstore, vector_store=vector_store_curadoria
)
# Criação/Recarregamento do índice com embeddings para 'curadoria'
if os.path.exists(chroma_storage_path_curadoria):
curadoria_index = VectorStoreIndex.from_vector_store(vector_store_curadoria)
else:
curadoria_splitter = LangchainNodeParser(
RecursiveCharacterTextSplitter(chunk_size=1200, chunk_overlap=100)
)
curadoria_index = VectorStoreIndex.from_documents(
curadoria_documents, storage_context=storage_context_curadoria, transformations=[curadoria_splitter]
)
vector_store_curadoria.persist()
curadoria_retriever = curadoria_index.as_retriever(similarity_top_k=2)
# Combinação de Retrievers (Embeddings + BM25)
vector_retriever = index.as_retriever(similarity_top_k=2)
retriever = QueryFusionRetriever(
[vector_retriever, bm25_retriever, curadoria_retriever],
similarity_top_k=2,
num_queries=4,
mode="reciprocal_rerank",
use_async=True,
verbose=True,
query_gen_prompt=(
"Gere {num_queries} perguntas de busca relacionadas à seguinte pergunta. "
"Priorize o significado da pergunta sobre qualquer histórico de conversa. "
"Se o histórico não for relevante para a pergunta, ignore-o. "
"Não adicione explicações, notas ou introduções. Apenas escreva as perguntas. "
"Pergunta: {query}\n\n"
"Perguntas:\n"
),
)
# Configuração do chat engine
nest_asyncio.apply()
memory = ChatMemoryBuffer.from_defaults(token_limit=3900)
query_engine = RetrieverQueryEngine.from_args(retriever)
chat_engine = CondensePlusContextChatEngine.from_defaults(
query_engine,
memory=memory,
context_prompt=(
"Você é um assistente virtual capaz de interagir normalmente, além de"
" fornecer informações sobre organogramas e listar funcionários."
" Aqui estão os documentos relevantes para o contexto:\n"
"{context_str}"
"\nInstrução: Use o histórico da conversa anterior, ou o contexto acima, para responder."
),
verbose=True,
)
# Armazenamento do chat
chat_store = SimpleChatStore()
if os.path.exists(chat_store_path):
chat_store = SimpleChatStore.from_persist_path(persist_path=chat_store_path)
else:
chat_store.persist(persist_path=chat_store_path)
# Interface do Chatbot
st.title("Chatbot Carômetro")
st.write("Este chatbot pode te ajudar a conseguir informações relevantes sobre os carômetros da Sicoob.")
if "chat_history" not in st.session_state:
st.session_state.chat_history = []
user_input = st.chat_input("Digite sua pergunta")
if user_input:
response = chat_engine.chat(user_input)
st.session_state.chat_history.append(f"user: {user_input}")
st.session_state.chat_history.append(f"assistant: {response}")
for message in st.session_state.chat_history:
role, text = message.split(":", 1)
with st.chat_message(role.strip().lower()):
st.write(text.strip()) |