File size: 1,330 Bytes
f2865dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
import gradio as gr
import laion_clap
from qdrant_client import QdrantClient
# Loading the Qdrant DB in local ###################################################################
client = QdrantClient("localhost", port=6333)
print("[INFO] Client created...")
# loading the model
print("[INFO] Loading the model...")
model_name = "laion/larger_clap_music"
model = laion_clap.CLAP_Module(enable_fusion=False)
model.load_ckpt() # download the default pretrained checkpoint.
# Gradio Interface #################################################################################
max_results = 10
def sound_search(query):
text_embed = model.get_text_embedding([query, ''])[0] # trick because can't accept singleton
hits = client.search(
collection_name="demo_db7",
query_vector=text_embed,
limit=max_results,
)
return [
gr.Audio(
hit.payload['audio_path'],
label=f"style: {hit.payload['style']} -- score: {hit.score}")
for hit in hits
]
with gr.Blocks() as demo:
gr.Markdown(
"""# Sound search database """
)
inp = gr.Textbox(placeholder="What sound are you looking for ?")
out = [gr.Audio(label=f"{x}") for x in range(max_results)] # Necessary to have different objs
inp.change(sound_search, inp, out)
demo.launch() |