petalschatlvn / http_api.py
lavanjv's picture
Upload 7 files
2b58075
raw
history blame
1.98 kB
from traceback import format_exc
import hivemind
from flask import jsonify, request
import config
from app import app, models
from utils import safe_decode
logger = hivemind.get_logger(__file__)
@app.post("/api/v1/generate")
def http_api_generate():
try:
model_name = get_typed_arg("model", str, config.DEFAULT_MODEL_NAME)
inputs = request.values.get("inputs")
do_sample = get_typed_arg("do_sample", int, 0)
temperature = get_typed_arg("temperature", float, 1.0)
top_k = get_typed_arg("top_k", int)
top_p = get_typed_arg("top_p", float)
max_length = get_typed_arg("max_length", int)
max_new_tokens = get_typed_arg("max_new_tokens", int)
session_id = request.values.get("session_id")
logger.info(f"generate(), model={repr(model_name)}, inputs={repr(inputs)}")
if session_id is not None:
raise RuntimeError(
"Reusing inference sessions was removed from HTTP API, please use WebSocket API instead"
)
model, tokenizer = models[model_name]
if inputs is not None:
inputs = tokenizer(inputs, return_tensors="pt")["input_ids"].to(config.DEVICE)
n_input_tokens = inputs.shape[1]
else:
n_input_tokens = 0
outputs = model.generate(
inputs=inputs,
do_sample=do_sample,
temperature=temperature,
top_k=top_k,
top_p=top_p,
max_length=max_length,
max_new_tokens=max_new_tokens,
)
outputs = safe_decode(tokenizer, outputs[0, n_input_tokens:])
logger.info(f"generate(), outputs={repr(outputs)}")
return jsonify(ok=True, outputs=outputs)
except Exception:
return jsonify(ok=False, traceback=format_exc())
def get_typed_arg(name, expected_type, default=None):
value = request.values.get(name)
return expected_type(value) if value is not None else default