File size: 1,361 Bytes
2b58075
 
2199474
2b58075
2199474
2b58075
 
f70c276
2b58075
 
 
 
 
 
2199474
 
 
2b58075
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from dataclasses import dataclass
from typing import Optional
import os
import torch
from dotenv import load_dotenv
from cpufeature import CPUFeature
from petals.constants import PUBLIC_INITIAL_PEERS
from huggingface_hub import login

@dataclass
class ModelInfo:
    repo: str
    adapter: Optional[str] = None

load_dotenv()
hugging_face_token = os.getenv("HUGGINGFACE_TOKEN")
login(token=hugging_face_token)
MODELS = [
    ModelInfo(repo="meta-llama/Llama-2-70b-hf"),
    ModelInfo(repo="meta-llama/Llama-2-70b-chat-hf"),
    #ModelInfo(repo="enoch/llama-65b-hf"),
    #ModelInfo(repo="enoch/llama-65b-hf", adapter="timdettmers/guanaco-65b"),
    # ModelInfo(repo="bigscience/bloom"),
    #ModelInfo(repo="bigscience/bloomz"),
]
DEFAULT_MODEL_NAME = "meta-llama/Llama-2-70b-chat-hf"

INITIAL_PEERS = PUBLIC_INITIAL_PEERS
# Set this to a list of multiaddrs to connect to a private swarm instead of the public one, for example:
# INITIAL_PEERS = ['/ip4/10.1.2.3/tcp/31234/p2p/QmcXhze98AcgGQDDYna23s4Jho96n8wkwLJv78vxtFNq44']

DEVICE = "cpu"

if DEVICE == "cuda":
    TORCH_DTYPE = "auto"
elif CPUFeature["AVX512f"] and CPUFeature["OS_AVX512"]:
    TORCH_DTYPE = torch.bfloat16
else:
    TORCH_DTYPE = torch.float32  # You can use bfloat16 in this case too, but it will be slow

STEP_TIMEOUT = 5 * 60
MAX_SESSIONS = 50  # Has effect only for API v1 (HTTP-based)