TANGO / models /quantizer.py
H-Liu1997's picture
init
31f2f28
import torch
import torch.nn as nn
import torch.nn.functional as F
class Quantizer(nn.Module):
def __init__(self, n_e, e_dim, beta):
super(Quantizer, self).__init__()
self.e_dim = e_dim
self.n_e = n_e
self.beta = beta
self.embedding = nn.Embedding(self.n_e, self.e_dim)
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)
def forward(self, z):
"""
Inputs the output of the encoder network z and maps it to a discrete
one-hot vectort that is the index of the closest embedding vector e_j
z (continuous) -> z_q (discrete)
:param z (B, seq_len, channel):
:return z_q:
"""
assert z.shape[-1] == self.e_dim
z_flattened = z.contiguous().view(-1, self.e_dim)
# B x V
d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \
torch.sum(self.embedding.weight**2, dim=1) - 2 * \
torch.matmul(z_flattened, self.embedding.weight.t())
# B x 1
min_encoding_indices = torch.argmin(d, dim=1)
z_q = self.embedding(min_encoding_indices).view(z.shape)
# compute loss for embedding
loss = torch.mean((z_q - z.detach())**2) + self.beta * \
torch.mean((z_q.detach() - z)**2)
# preserve gradients
z_q = z + (z_q - z).detach()
min_encodings = F.one_hot(min_encoding_indices, self.n_e).type(z.dtype)
e_mean = torch.mean(min_encodings, dim=0)
perplexity = torch.exp(-torch.sum(e_mean*torch.log(e_mean + 1e-10)))
return loss, z_q, min_encoding_indices, perplexity
def map2index(self, z):
"""
Inputs the output of the encoder network z and maps it to a discrete
one-hot vectort that is the index of the closest embedding vector e_j
z (continuous) -> z_q (discrete)
:param z (B, seq_len, channel):
:return z_q:
"""
assert z.shape[-1] == self.e_dim
#print(z.shape)
z_flattened = z.contiguous().view(-1, self.e_dim)
#print(z_flattened.shape)
# B x V
d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \
torch.sum(self.embedding.weight**2, dim=1) - 2 * \
torch.matmul(z_flattened, self.embedding.weight.t())
# B x 1
min_encoding_indices = torch.argmin(d, dim=1)
return min_encoding_indices.reshape(z.shape[0], -1)
def get_codebook_entry(self, indices):
"""
:param indices(B, seq_len):
:return z_q(B, seq_len, e_dim):
"""
index_flattened = indices.view(-1)
z_q = self.embedding(index_flattened)
z_q = z_q.view(indices.shape + (self.e_dim, )).contiguous()
return z_q
class EmbeddingEMA(nn.Module):
def __init__(self, num_tokens, codebook_dim, decay=0.99, eps=1e-5):
super(EmbeddingEMA, self).__init__()
self.decay = decay
self.eps = eps
weight = torch.randn(num_tokens, codebook_dim)
self.weight = nn.Parameter(weight, requires_grad=False)
self.cluster_size = nn.Parameter(torch.zeros(num_tokens), requires_grad=False)
self.embed_avg = nn.Parameter(weight.clone(), requires_grad=False)
self.update = True
def forward(self, embed_id):
return F.embedding(embed_id, self.weight)
def cluster_size_ema_update(self, new_cluster_size):
self.cluster_size.data.mul_(self.decay).add_(new_cluster_size, alpha=1 - self.decay)
def embed_avg_ema_update(self, new_emb_avg):
self.embed_avg.data.mul_(self.decay).add(new_emb_avg, alpha=1 - self.decay)
def weight_update(self, num_tokens):
n = self.cluster_size.sum()
smoothed_cluster_size = (
(self.cluster_size + self.eps) / (n + num_tokens*self.eps) * n
)
embed_normalized = self.embed_avg / smoothed_cluster_size.unsqueeze(1)
self.weight.data.copy_(embed_normalized)
class EMAVectorQuantizer(nn.Module):
def __init__(self, n_embed, embedding_dim, beta, decay=0.99, eps=1e-5):
super(EMAVectorQuantizer, self).__init__()
self.codebook_dim = embedding_dim
self.num_tokens = n_embed
self.beta = beta
self.embedding = EmbeddingEMA(self.num_tokens, self.codebook_dim, decay, eps)
def forward(self, z):
z_flattened = z.view(-1, self.codebook_dim)
d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \
torch.sum(self.embedding.weight ** 2, dim=1) - 2 * \
torch.matmul(z_flattened, self.embedding.weight.t())
min_encoding_indices = torch.argmin(d, dim=1)
z_q = self.embedding(min_encoding_indices).view(z.shape)
min_encodings = F.one_hot(min_encoding_indices, self.num_tokens).type(z.dtype)
e_mean = torch.mean(min_encodings, dim=0)
perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + 1e-10)))
if self.training and self.embedding.update:
encoding_sum = min_encodings.sum(0)
embed_sum = min_encodings.transpose(0, 1)@z_flattened
self.embedding.cluster_size_ema_update(encoding_sum)
self.embedding.embed_avg_ema_update(embed_sum)
self.embedding.weight_update(self.num_tokens)
loss = self.beta * F.mse_loss(z_q.detach(), z)
z_q = z + (z_q - z).detach()
return loss, z_q, min_encoding_indices, perplexity
# class GumbelQuantizer(nn.Module):
# def __init__(self, num_hiddens, embedding_dim, n_embed, straight_through=True,
# kl_weight=5e-4, temp_init=1.0):
# super(GumbelQuantizer, self).__init__()
#
# self.embedding_dim = embedding_dim
# self.n_embed = n_embed
#
# self.straight_through = straight_through
# self.temperature = temp_init
# self.kl_weight = kl_weight
#
# self.proj = nn.Linear(num_hiddens, n_embed)
# self.embed = nn.Embedding(n_embed, embedding_dim)