TANGO / models /jointembedding_high_env0.py
H-Liu1997's picture
init
31f2f28
import copy
import math
import pickle
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import difflib
from typing import Optional, Tuple, Union
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor, BertTokenizer, BertModel, Wav2Vec2Model, Wav2Vec2Config
from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2FeatureEncoder
from .motion_encoder import VQEncoderV6
def audio_to_time_aligned_text_features(inputs, processor, model, tokenizer, bert_model):
with torch.no_grad():
logits = model(inputs.input_values).logits # shape: (1, time_steps, vocab_size)
predicted_ids_per_timestep = torch.argmax(logits, dim=-1) # shape: (1, time_steps)
predicted_ids_per_timestep = predicted_ids_per_timestep[0].cpu().numpy()
vocab = processor.tokenizer.get_vocab()
id_to_token = {v: k for k, v in vocab.items()}
tokens_per_timestep = [id_to_token[id] for id in predicted_ids_per_timestep]
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.decode(predicted_ids[0])
inputs_bert = tokenizer(transcription, return_tensors='pt')
input_ids = inputs_bert['input_ids'][0]
tokens_bert = tokenizer.convert_ids_to_tokens(input_ids)
with torch.no_grad():
outputs_bert = bert_model(**inputs_bert.to(inputs.input_values.device))
all_token_embeddings = outputs_bert.last_hidden_state[0]
per_timestep_chars = []
per_timestep_char_indices = []
for idx, t in enumerate(tokens_per_timestep):
if t not in ('<pad>', '|'):
per_timestep_chars.append(t.lower())
per_timestep_char_indices.append(idx)
bert_chars = []
bert_char_indices = []
for idx, token in enumerate(tokens_bert):
if token in ('[CLS]', '[SEP]'):
continue
token_str = token.replace('##', '')
for c in token_str:
bert_chars.append(c)
bert_char_indices.append(idx)
s = difflib.SequenceMatcher(None, per_timestep_chars, bert_chars)
opcodes = s.get_opcodes()
per_timestep_to_bert_token_idx = {}
for tag, i1, i2, j1, j2 in opcodes:
if tag == 'equal':
for k in range(i2 - i1):
per_timestep_idx = per_timestep_char_indices[i1 + k]
bert_token_idx = bert_char_indices[j1 + k]
per_timestep_to_bert_token_idx[per_timestep_idx] = bert_token_idx
features_per_timestep = []
check = []
for i, per_token in enumerate(tokens_per_timestep):
if i == 0:
embedding = all_token_embeddings[0]
check.append("cls")
elif per_token in ('<pad>', '|'):
embedding = torch.zeros(all_token_embeddings.shape[-1]).to(inputs.input_values.device)
check.append(0)
else:
if i in per_timestep_to_bert_token_idx:
bert_idx = per_timestep_to_bert_token_idx[i]
embedding = all_token_embeddings[bert_idx]
check.append(tokens_bert[bert_idx])
else:
embedding = torch.zeros(all_token_embeddings.shape[-1]).to(inputs.input_values.device)
check.append(0)
features_per_timestep.append(embedding)
features_per_timestep = torch.stack(features_per_timestep)
updated_check = check.copy()
for i in range(len(check)):
if check[i] == 0:
left = i - 1
right = i + 1
left_found = False
right_found = False
while left >= 0:
if check[left] != 0:
left_found = True
break
left -= 1
while right < len(check):
if check[right] != 0:
right_found = True
break
right += 1
if left_found and right_found:
if (i - left) <= (right - i):
nearest = left
else:
nearest = right
elif left_found:
nearest = left
elif right_found:
nearest = right
else:
continue
updated_check[i] = updated_check[nearest]
features_per_timestep[i] = features_per_timestep[nearest]
features_per_timestep = features_per_timestep.unsqueeze(0)
return transcription, features_per_timestep, all_token_embeddings
class MLP(nn.Module):
def __init__(self, in_dim, hidden_size, out_dim):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(in_dim, hidden_size),
nn.LeakyReLU(0.2, True),
nn.Linear(hidden_size, out_dim)
)
def forward(self, inputs):
out = self.mlp(inputs)
return out
class PeriodicPositionalEncoding(nn.Module):
def __init__(self, d_model, dropout=0.1, period=20, max_seq_len=64):
super(PeriodicPositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(period, d_model)
position = torch.arange(0, period, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0) # (1, period, d_model)
repeat_num = (max_seq_len//period) + 1
pe = pe.repeat(1, repeat_num, 1) # (1, repeat_num, period, d_model)
self.register_buffer('pe', pe)
def forward(self, x):
# print(self.pe.shape, x.shape)
x = x + self.pe[:, :x.size(1), :]
return self.dropout(x)
class CustomMultiheadAttention(nn.Module):
def __init__(self, embed_dim, num_heads):
super(CustomMultiheadAttention, self).__init__()
self.num_heads = num_heads
self.head_dim = embed_dim // num_heads
assert self.head_dim * num_heads == embed_dim, "embed_dim must be divisible by num_heads"
self.query_proj = nn.Linear(embed_dim, embed_dim)
self.key_proj = nn.Linear(embed_dim, embed_dim)
self.value_proj = nn.Linear(embed_dim, embed_dim)
self.out_proj = nn.Linear(embed_dim, embed_dim)
def forward(self, query, key, value):
batch_size, seq_len, embed_dim = query.size()
# Linear projections
Q = self.query_proj(query).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
K = self.key_proj(key).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
V = self.value_proj(value).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
# Scaled dot-product attention
scores = torch.matmul(Q, K.transpose(-2, -1)) / (self.head_dim ** 0.5)
attn_weights = F.softmax(scores, dim=-1) # Shape: (batch_size, num_heads, seq_len, seq_len)
attn_output = torch.matmul(attn_weights, V)
# Concatenate heads
attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, seq_len, embed_dim)
# Apply final linear projection
output = self.out_proj(attn_output)
return output, attn_weights # Return the per-head attention weights
def reinitialize_weights(module):
for submodule in module.modules():
weight = getattr(submodule, 'weight', None)
if weight is not None and isinstance(weight, torch.Tensor) and weight.dim() >= 2:
torch.nn.init.xavier_uniform_(weight)
print("init")
elif weight is not None and isinstance(weight, torch.Tensor):
torch.nn.init.normal_(weight, mean=0.0, std=0.02)
print("init")
bias = getattr(submodule, 'bias', None)
if bias is not None and isinstance(bias, torch.Tensor):
torch.nn.init.zeros_(bias)
class WrapedMotionCNN(nn.Module):
def __init__(self, args):
super(WrapedMotionCNN, self).__init__()
self.args = args
encoder_layer = nn.TransformerEncoderLayer(
d_model=self.args.motion_f, # This should match the hidden size of the Wav2Vec2 model
nhead=8, # Number of attention heads
dim_feedforward=self.args.hidden_size, # The feedforward network dimension
dropout=0.1, # Dropout rate
batch_first=True
)
args_top = copy.deepcopy(self.args)
args_top.vae_layer = 3
args_top.vae_length = self.args.motion_f
args_top.vae_test_dim = self.args.motion_dim
self.feature_extractor = VQEncoderV6(args_top)
args_top = copy.deepcopy(self.args)
args_top.vae_layer = 6
args_top.vae_length = self.args.motion_f
args_top.vae_test_dim = self.args.motion_dim + self.args.motion_f
self.encoder_cnn = VQEncoderV6(args_top)
self.pos_encoding = PeriodicPositionalEncoding(d_model=self.args.motion_f, period=20, max_seq_len=64, dropout=0.0)
self.encoder_trans = nn.TransformerEncoder(encoder_layer, num_layers=1) # Wav2Vec2Model.from_pretrained('facebook/wav2vec2-base-960h').encoder
def forward(self,
inputs,
attention_mask: Optional[torch.Tensor] = None,
mask_time_indices: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None
):
low_level = self.feature_extractor(inputs)
# print(low_level.shape, inputs.shape)
hidden_states = self.encoder_cnn(torch.cat([low_level.detach(), inputs], dim=-1))
hidden_states = self.pos_encoding(hidden_states)
hidden_states = self.encoder_trans(hidden_states)
return {
"low_level": low_level,
"high_level": hidden_states
}
class WrapedWav2Vec(nn.Module):
def __init__(self):
super(WrapedWav2Vec, self).__init__()
self.feature_extractor = Wav2Vec2Model.from_pretrained('facebook/wav2vec2-base-960h').feature_extractor
self.feature_projection = Wav2Vec2Model.from_pretrained('facebook/wav2vec2-base-960h').feature_projection
self.encoder = Wav2Vec2Model.from_pretrained('facebook/wav2vec2-base-960h').encoder
# print(self.encoder)
self.encoder.layers = self.encoder.layers[:1]
# print(self.encoder)
self.proj_down = nn.Linear(768,512)
# print(bug)
def forward(self,
inputs,
attention_mask: Optional[torch.Tensor] = None,
mask_time_indices: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None
):
finetune_audio_low = self.feature_extractor(inputs).transpose(1, 2)
hidden_states, _ = self.feature_projection(finetune_audio_low.detach())
encoder_outputs = self.encoder(
hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = encoder_outputs[0]
hidden_states = self.proj_down(hidden_states)
# print(hidden_states.shape)
return {
"low_level": finetune_audio_low,
"high_level": hidden_states
}
class JointEmbedding(nn.Module):
def __init__(self, args):
super(JointEmbedding, self).__init__()
self.args = args.model
self.audio_processor = Wav2Vec2Processor.from_pretrained('facebook/wav2vec2-base-960h')
self.audio_encoder = Wav2Vec2Model.from_pretrained('facebook/wav2vec2-base-960h')
self.config_wav2vec = Wav2Vec2Config.from_pretrained('facebook/wav2vec2-base-960h')
# self.audio_encoder_fintune = Wav2Vec2Model.from_pretrained('facebook/wav2vec2-base-960h').feature_extractor
self.audio_encoder_fintune = WrapedWav2Vec()
# print(self.audio_encoder_fintune)
# print(bug)
self.asr = Wav2Vec2ForCTC.from_pretrained('facebook/wav2vec2-base-960h')
self.bert_tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
self.bert_model = BertModel.from_pretrained('bert-base-uncased')
self.audio_low_mapping = MLP(512+512, self.args.hidden_size, self.args.audio_f)
self.audio_high_mapping = MLP(512+512+512, self.args.hidden_size, self.args.audio_f)
# self.audio_down_proj_1 = nn.Linear(768, 512)
self.audio_down_proj_2 = nn.Linear(768, 512)
self.audio_down_proj_3 = nn.Linear(768, 512)
# self.audio_sa = nn.MultiheadAttention(embed_dim=self.args.audio_f, num_heads=8, batch_first=True)
self.audio_sa = CustomMultiheadAttention(embed_dim=self.args.audio_f, num_heads=8,)
self.motion_encoder_fintune = WrapedMotionCNN(self.args)
self.motion_low_mapping = MLP(self.args.motion_f, self.args.hidden_size, self.args.motion_f)
self.motion_high_mapping = MLP(self.args.motion_f, self.args.hidden_size, self.args.motion_f)
# self.motion_sa = nn.MultiheadAttention(embed_dim=self.args.audio_f, num_heads=8, batch_first=True)
self.motion_sa = CustomMultiheadAttention(embed_dim=self.args.audio_f, num_heads=8,)
self.down_sample = 2 # for downsample 30 fps motion to 15
self.smplx_model = None
self.get_motion_reps = None
self.audio_to_time_aligned_text_features = audio_to_time_aligned_text_features
self.low_temp = nn.Parameter(torch.tensor(0.07))
self.low_level_loss_fn = None
self.high_temp = nn.Parameter(torch.tensor(0.07))
self.high_level_loss_fn = None
def _reset_parameters(self):
nn.init.normal_(self.mask_embeddings, 0, self.args.hidden_size ** -0.5)
def forward(self, in_audio=None, in_motion=None, cached_audio_low=None, cached_audio_high=None, cached_rep15d=None):
# motion feature
if cached_rep15d is not None:
in_motion = cached_rep15d[:,::self.down_sample]
else:
in_motion = self.get_motion_reps(in_motion, self.smplx_model)["rep15d"][:,::self.down_sample]
motion_features = self.motion_encoder_fintune(in_motion)
raw_motion_low = motion_features["low_level"] # self.motion_encoder_low(in_motion)
raw_motion_high = motion_features["high_level"] # self.motion_encoder_high(torch.cat([raw_motion_low.detach(), in_motion], dim=-1))
motion_low = self.motion_low_mapping(raw_motion_low)
motion_high = self.motion_high_mapping(raw_motion_high)
motion_high_att, motion_high_weight = self.motion_sa(motion_high, motion_high, motion_high)
bs, n, c = motion_high.shape
# print("a:", motion_high_weight[:, :, 0, :].unsqueeze(2).shape, "b:", motion_high.transpose(1, 2).view(bs, 8, c//8, n).shape)
motion_high_att_before_sum = motion_high_weight[:, :, 0, :].unsqueeze(2) * motion_high.transpose(1, 2).view(bs, 8, c//8, n)
motion_high_att_before_sum = motion_high_att_before_sum.reshape(bs, c, n).transpose(1, 2)
motion_low = F.interpolate(motion_low.transpose(1, 2), scale_factor=2, mode='linear', align_corners=True).transpose(1, 2)
motion_high_att = F.interpolate(motion_high_att.transpose(1, 2), scale_factor=2, mode='linear', align_corners=True).transpose(1, 2)
motion_high_att_before_sum = F.interpolate(motion_high_att_before_sum.transpose(1, 2), scale_factor=2, mode='linear', align_corners=True).transpose(1, 2)
motion_cls = motion_high_att[:, 0]
# audio feature
if cached_audio_low is not None:
raw_audio_low = cached_audio_low
raw_audio_high = torch.cat([self.audio_down_proj_2(cached_audio_high[:, :, :768]), self.audio_down_proj_3(cached_audio_high[:, :, 768:])], dim=-1)
audio_list = [i.cpu().numpy() for i in in_audio]
inputs = self.audio_processor(audio_list, sampling_rate=16000, return_tensors="pt", padding=True).to(in_audio.device)
finetune_audio = self.audio_encoder_fintune(inputs.input_values)
finetune_audio_low, finetune_audio_high = finetune_audio["low_level"], finetune_audio["high_level"]
diff = raw_audio_low.shape[1] - finetune_audio_low.shape[1]
if diff > 0:
finetune_audio_low = torch.cat([finetune_audio_low, finetune_audio_low[:, -diff:]], dim=1)
diff = raw_audio_high.shape[1] - finetune_audio_high.shape[1]
if diff > 0:
finetune_audio_high = torch.cat([finetune_audio_high, finetune_audio_high[:, -diff:]], dim=1)
raw_audio_low = torch.cat([raw_audio_low, finetune_audio_low], dim=-1) # bs, t, 1024
else:
print("error! must have cached audio in training")
# print(raw_audio_low.shape, raw_audio_high.shape, "before")
raw_audio_low = F.interpolate(raw_audio_low.transpose(1, 2), scale_factor=30/50, mode='linear', align_corners=True).transpose(1, 2)
raw_audio_high = F.interpolate(raw_audio_high.transpose(1, 2), scale_factor=15/50, mode='linear', align_corners=True).transpose(1, 2)
finetune_audio_high = F.interpolate(finetune_audio_high.transpose(1, 2), scale_factor=15/50, mode='linear', align_corners=True).transpose(1, 2)
# print(raw_audio_low.shape, raw_audio_high.shape, "after")
audio_low = self.audio_low_mapping(raw_audio_low)
raw_audio_high = torch.cat([finetune_audio_high, raw_audio_high], dim=-1)
# print(finetune_audio_high.shape, raw_audio_high.shape)
audio_high = self.audio_high_mapping(raw_audio_high)
audio_high_att, audio_high_weight = self.audio_sa(audio_high, audio_high, audio_high)
bs, n, c = audio_high.shape
audio_high_att_before_sum = audio_high_weight[:, :, 0, :].unsqueeze(2) * audio_high.transpose(1, 2).view(bs, 8, c//8, n)
audio_high_att_before_sum = audio_high_att_before_sum.reshape(bs, c, n).transpose(1, 2)
audio_high_att = F.interpolate(audio_high_att.transpose(1, 2), scale_factor=2, mode='linear', align_corners=True).transpose(1, 2)
audio_high_att_before_sum = F.interpolate(audio_high_att_before_sum.transpose(1, 2), scale_factor=2, mode='linear', align_corners=True).transpose(1, 2)
audio_cls = audio_high_att[:, 0]
# low_infonce, low_acc = self.low_level_loss_fn(audio_low, motion_low, learned_temp=self.low_temp)
# fix temp to 0.1 is better than learned temp
low_infonce, low_acc = self.low_level_loss_fn(audio_low, motion_low)
high_infonce = self.high_level_loss_fn(audio_cls, motion_cls)
return {
"audio_low":audio_low,
"audio_high":audio_high_att,
"audio_cls":audio_cls,
"audio_high_weight":audio_high_att_before_sum,
"motion_low":motion_low,
"motion_high":motion_high_att,
"motion_cls":motion_cls,
"motion_high_weight":motion_high_att_before_sum,
"low_level_loss": [low_infonce, low_acc],
"high_level_loss": high_infonce
}
def get_audio_features(self, in_audio):
audio_list = [i.cpu().numpy() for i in in_audio]
inputs = self.audio_processor(audio_list, sampling_rate=16000, return_tensors="pt", padding=True).to(in_audio.device)
raw_audio_low = self.audio_encoder.feature_extractor(inputs.input_values).transpose(1, 2)
raw_audio_low = raw_audio_low
finetune_audio = self.audio_encoder_fintune(inputs.input_values)
finetune_audio_low, finetune_audio_high = finetune_audio["low_level"], finetune_audio["high_level"]
diff = raw_audio_low.shape[1] - finetune_audio_low.shape[1]
if diff > 0:
finetune_audio_low = torch.cat([finetune_audio_low, finetune_audio_low[:, -diff:]], dim=1)
raw_audio_low = torch.cat([raw_audio_low, finetune_audio_low], dim=-1)
raw_audio_high = self.audio_encoder(inputs.input_values).last_hidden_state
diff = raw_audio_high.shape[1] - finetune_audio_high.shape[1]
if diff > 0:
finetune_audio_high = torch.cat([finetune_audio_high, finetune_audio_high[:, -diff:]], dim=1)
# print(raw_audio_high.shape, finetune_audio_high.shape)
_, bert_time_aligned_text, _ = audio_to_time_aligned_text_features(inputs, self.audio_processor, self.asr, self.bert_tokenizer, self.bert_model)
raw_audio_high = torch.cat([raw_audio_high, bert_time_aligned_text], dim=2)
raw_audio_high = torch.cat([self.audio_down_proj_2(raw_audio_high[:, :, :768]), self.audio_down_proj_3(raw_audio_high[:, :, 768:])], dim=-1)
raw_audio_low = F.interpolate(raw_audio_low.transpose(1, 2), scale_factor=30/50, mode='linear', align_corners=True).transpose(1, 2)
raw_audio_high = F.interpolate(raw_audio_high.transpose(1, 2), scale_factor=15/50, mode='linear', align_corners=True).transpose(1, 2)
finetune_audio_high = F.interpolate(finetune_audio_high.transpose(1, 2), scale_factor=15/50, mode='linear', align_corners=True).transpose(1, 2)
if raw_audio_low.shape[1] % 2 == 1:
raw_audio_low = torch.cat([raw_audio_low, raw_audio_low[:, -1:]], dim=1)
diff = raw_audio_low[:, ::2].shape[1] - raw_audio_high.shape[1]
if diff > 0:
raw_audio_high = torch.cat([raw_audio_high, raw_audio_high[:, -diff:]], dim=1)
finetune_audio_high = torch.cat([finetune_audio_high, finetune_audio_high[:, -diff:]], dim=1)
audio_low = self.audio_low_mapping(raw_audio_low)
# print(audio_low.shape[1]//2, raw_audio_high.shape[1])
raw_audio_high = torch.cat([finetune_audio_high, raw_audio_high], dim=-1)
audio_high = self.audio_high_mapping(raw_audio_high)
audio_high_att, audio_high_weight = self.audio_sa(audio_high, audio_high, audio_high)
bs, n, c = audio_high.shape
audio_high_att_before_sum = audio_high_weight[:, :, 0, :].unsqueeze(2) * audio_high.transpose(1, 2).view(bs, 8, c//8, n)
audio_high_att_before_sum = audio_high_att_before_sum.reshape(bs, c, n).transpose(1, 2)
audio_high_att = F.interpolate(audio_high_att.transpose(1, 2), scale_factor=2, mode='linear', align_corners=True).transpose(1, 2)
audio_high_att_before_sum = F.interpolate(audio_high_att_before_sum.transpose(1, 2), scale_factor=2, mode='linear', align_corners=True).transpose(1, 2)
audio_cls = audio_high_att[:, 0]
return {
"audio_low":audio_low,
"audio_high":audio_high_att,
"audio_cls":audio_cls,
"audio_high_weight":audio_high_att_before_sum,
}
def get_motion_features(self, in_motion):
original_length = in_motion.shape[1]
in_motion = self.get_motion_reps(in_motion, self.smplx_model)["rep15d"][:,::self.down_sample]
motion_features = self.motion_encoder_fintune(in_motion)
raw_motion_low = motion_features["low_level"] # self.motion_encoder_low(in_motion)
raw_motion_high = motion_features["high_level"] # self.motion_encoder_high(torch.cat([raw_motion_low.detach(), in_motion], dim=-1))
motion_low = self.motion_low_mapping(raw_motion_low)
motion_high = self.motion_high_mapping(raw_motion_high)
motion_high_att, motion_high_weight = self.motion_sa(motion_high, motion_high, motion_high)
bs, n, c = motion_high.shape
motion_high_att_before_sum = motion_high_weight[:, :, 0, :].unsqueeze(2) * motion_high.transpose(1, 2).view(bs, 8, c//8, n)
motion_high_att_before_sum = motion_high_att_before_sum.reshape(bs, c, n).transpose(1, 2)
motion_low = F.interpolate(motion_low.transpose(1, 2), scale_factor=2, mode='linear', align_corners=True).transpose(1, 2)
motion_high_att = F.interpolate(motion_high_att.transpose(1, 2), scale_factor=2, mode='linear', align_corners=True).transpose(1, 2)
motion_high_att_before_sum = F.interpolate(motion_high_att_before_sum.transpose(1, 2), scale_factor=2, mode='linear', align_corners=True).transpose(1, 2)
# if motion_low.shape[1] -
motion_low = motion_low[:, :original_length]
motion_high_att = motion_high_att[:, :original_length]
motion_high_att_before_sum = motion_high_att_before_sum[:, :original_length]
motion_cls = motion_high_att[:, 0]
# print(original_length, motion_low.shape, motion_high_att.shape, motion_high_att_before_sum.shape)
return {
"motion_low":motion_low,
"motion_high":motion_high_att,
"motion_cls":motion_cls,
"motion_high_weight":motion_high_att_before_sum,
}