File size: 10,658 Bytes
31f2f28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
# import smplx
# import torch
# import pickle
# import numpy as np
# # Global: Load the SMPL-X model once
# smplx_model = smplx.create(
# "/content/drive/MyDrive/003_Codes/TANGO-JointEmbedding/emage/smplx_models/",
# model_type='smplx',
# gender='NEUTRAL_2020',
# use_face_contour=False,
# num_betas=300,
# num_expression_coeffs=100,
# ext='npz',
# use_pca=True,
# num_pca_comps=12,
# ).to("cuda").eval()
# device = "cuda"
# def pkl_to_npz(pkl_path, npz_path):
# # Load the pickle file
# with open(pkl_path, "rb") as f:
# pkl_example = pickle.load(f)
# bs = 1
# n = pkl_example["expression"].shape[0] # Assuming this is the batch size
# # Convert numpy arrays to torch tensors
# def to_tensor(numpy_array):
# return torch.tensor(numpy_array, dtype=torch.float32).to(device)
# # Ensure that betas are loaded from the pickle data, converting them to torch tensors
# betas = to_tensor(pkl_example["betas"])
# transl = to_tensor(pkl_example["transl"])
# expression = to_tensor(pkl_example["expression"])
# jaw_pose = to_tensor(pkl_example["jaw_pose"])
# global_orient = to_tensor(pkl_example["global_orient"])
# body_pose_axis = to_tensor(pkl_example["body_pose_axis"])
# left_hand_pose = to_tensor(pkl_example['left_hand_pose'])
# right_hand_pose = to_tensor(pkl_example['right_hand_pose'])
# leye_pose = to_tensor(pkl_example['leye_pose'])
# reye_pose = to_tensor(pkl_example['reye_pose'])
# # Pass the loaded data into the SMPL-X model
# gt_vertex = smplx_model(
# betas=betas,
# transl=transl, # Translation
# expression=expression, # Expression
# jaw_pose=jaw_pose, # Jaw pose
# global_orient=global_orient, # Global orientation
# body_pose=body_pose_axis, # Body pose
# left_hand_pose=left_hand_pose, # Left hand pose
# right_hand_pose=right_hand_pose, # Right hand pose
# return_full_pose=True,
# leye_pose=leye_pose, # Left eye pose
# reye_pose=reye_pose, # Right eye pose
# )
# # Save the relevant data to an npz file
# np.savez(npz_path,
# betas=pkl_example["betas"],
# poses=gt_vertex["full_pose"].cpu().numpy(),
# expressions=pkl_example["expression"],
# trans=pkl_example["transl"],
# model='smplx2020',
# gender='neutral',
# mocap_frame_rate=30,
# )
# from tqdm import tqdm
# import os
# def convert_all_pkl_in_folder(folder_path):
# # Collect all .pkl files
# pkl_files = []
# for root, dirs, files in os.walk(folder_path):
# for file in files:
# if file.endswith(".pkl"):
# pkl_files.append(os.path.join(root, file))
# # Process each file with a progress bar
# for pkl_path in tqdm(pkl_files, desc="Converting .pkl to .npz"):
# npz_path = pkl_path.replace(".pkl", ".npz") # Replace .pkl with .npz
# pkl_to_npz(pkl_path, npz_path)
# convert_all_pkl_in_folder("/content/oliver/oliver/")
# import os
# import json
# def collect_dataset_info(root_dir):
# dataset_info = []
# for root, dirs, files in os.walk(root_dir):
# for file in files:
# if file.endswith(".npz"):
# video_id = file[:-4] # Removing the .npz extension to get the video ID
# # Construct the paths based on the current root directory
# motion_path = os.path.join(root)
# video_path = os.path.join(root)
# audio_path = os.path.join(root)
# # Determine the mode (train, val, test) by checking parent directory
# mode = root.split(os.sep)[-2] # Assuming mode is one folder up in hierarchy
# dataset_info.append({
# "video_id": video_id,
# "video_path": video_path,
# "audio_path": audio_path,
# "motion_path": motion_path,
# "mode": mode
# })
# return dataset_info
# # Set the root directory path of your dataset
# root_dir = '/content/oliver/oliver/' # Adjust this to your actual root directory
# dataset_info = collect_dataset_info(root_dir)
# output_file = '/content/drive/MyDrive/003_Codes/TANGO-JointEmbedding/datasets/show-oliver-original.json'
# # Save the dataset information to a JSON file
# with open(output_file, 'w') as json_file:
# json.dump(dataset_info, json_file, indent=4)
# print(f"Dataset information saved to {output_file}")
# import os
# import json
# import numpy as np
# def load_npz(npz_path):
# try:
# data = np.load(npz_path)
# return data
# except Exception as e:
# print(f"Error loading {npz_path}: {e}")
# return None
# def generate_clips(data, stride, window_length):
# clips = []
# for entry in data:
# npz_data = load_npz(os.path.join(entry['motion_path'],entry['video_id']+".npz"))
# # Only continue if the npz file is successfully loaded
# if npz_data is None:
# continue
# # Determine the total length of the sequence from npz data
# total_frames = npz_data["poses"].shape[0]
# # Generate clips based on stride and window_length
# for start_idx in range(0, total_frames - window_length + 1, stride):
# end_idx = start_idx + window_length
# clip = {
# "video_id": entry["video_id"],
# "video_path": entry["video_path"],
# "audio_path": entry["audio_path"],
# "motion_path": entry["motion_path"],
# "mode": entry["mode"],
# "start_idx": start_idx,
# "end_idx": end_idx
# }
# clips.append(clip)
# return clips
# # Load the existing dataset JSON file
# input_json = '/content/drive/MyDrive/003_Codes/TANGO-JointEmbedding/datasets/show-oliver-original.json'
# with open(input_json, 'r') as f:
# dataset_info = json.load(f)
# # Set stride and window length
# stride = 40 # Adjust stride as needed
# window_length = 64 # Adjust window length as needed
# # Generate clips for all data
# clips_data = generate_clips(dataset_info, stride, window_length)
# # Save the filtered clips data to a new JSON file
# output_json = f'/content/drive/MyDrive/003_Codes/TANGO-JointEmbedding/datasets/show-oliver-s{stride}_w{window_length}.json'
# with open(output_json, 'w') as f:
# json.dump(clips_data, f, indent=4)
# print(f"Filtered clips data saved to {output_json}")
from ast import Expression
import os
import numpy as np
import wave
from moviepy.editor import VideoFileClip
def split_npz(npz_path, output_prefix):
try:
# Load the npz file
data = np.load(npz_path)
# Get the arrays and split them along the time dimension (T)
poses = data["poses"]
betas = data["betas"]
expressions = data["expressions"]
trans = data["trans"]
# Determine the halfway point (T/2)
half = poses.shape[0] // 2
# Save the first half (0-5 seconds)
np.savez(output_prefix + "_0_5.npz",
betas=betas[:half],
poses=poses[:half],
expressions=expressions[:half],
trans=trans[:half],
model=data['model'],
gender=data['gender'],
mocap_frame_rate=data['mocap_frame_rate'])
# Save the second half (5-10 seconds)
np.savez(output_prefix + "_5_10.npz",
betas=betas[half:],
poses=poses[half:],
expressions=expressions[half:],
trans=trans[half:],
model=data['model'],
gender=data['gender'],
mocap_frame_rate=data['mocap_frame_rate'])
print(f"NPZ split saved for {output_prefix}")
except Exception as e:
print(f"Error processing NPZ file {npz_path}: {e}")
def split_wav(wav_path, output_prefix):
try:
with wave.open(wav_path, 'rb') as wav_file:
params = wav_file.getparams()
frames = wav_file.readframes(wav_file.getnframes())
half_frame = len(frames) // 2
# Create two half files
for i, start_frame in enumerate([0, half_frame]):
with wave.open(f"{output_prefix}_{i*5}_{(i+1)*5}.wav", 'wb') as out_wav:
out_wav.setparams(params)
if i == 0:
out_wav.writeframes(frames[:half_frame])
else:
out_wav.writeframes(frames[half_frame:])
print(f"WAV split saved for {output_prefix}")
except Exception as e:
print(f"Error processing WAV file {wav_path}: {e}")
def split_mp4(mp4_path, output_prefix):
try:
clip = VideoFileClip(mp4_path)
for i in range(2):
subclip = clip.subclip(i*5, (i+1)*5)
subclip.write_videofile(f"{output_prefix}_{i*5}_{(i+1)*5}.mp4", codec="libx264", audio_codec="aac")
print(f"MP4 split saved for {output_prefix}")
except Exception as e:
print(f"Error processing MP4 file {mp4_path}: {e}")
def process_files(root_dir, output_dir):
import json
clips = []
dirs = os.listdir(root_dir)
for dir in dirs:
video_id = dir
output_prefix = os.path.join(output_dir, video_id)
root = os.path.join(root_dir, dir)
npz_path = os.path.join(root, video_id + ".npz")
wav_path = os.path.join(root, video_id + ".wav")
mp4_path = os.path.join(root, video_id + ".mp4")
# split_npz(npz_path, output_prefix)
# split_wav(wav_path, output_prefix)
# split_mp4(mp4_path, output_prefix)
clip = {
"video_id": video_id,
"video_path": root,
"audio_path": root,
"motion_path": root,
"mode": "test",
"start_idx": 0,
"end_idx": 150
}
clips.append(clip)
output_json = output_dir + "/test.json"
with open(output_json, 'w') as f:
json.dump(clips, f, indent=4)
# Set the root directory path of your dataset and output directory
root_dir = '/content/oliver/oliver/Abortion_Laws_-_Last_Week_Tonight_with_John_Oliver_HBO-DRauXXz6t0Y.webm/test/'
output_dir = '/content/test'
# Make sure the output directory exists
os.makedirs(output_dir, exist_ok=True)
# Process all the files
process_files(root_dir, output_dir)
|