File size: 20,335 Bytes
31f2f28 1ea6e65 31f2f28 b68c121 31f2f28 41a75ff 31f2f28 41a75ff 31f2f28 41a75ff 31f2f28 41a75ff 31f2f28 41a75ff 31f2f28 28ffb97 31f2f28 28ffb97 31f2f28 1ea6e65 31f2f28 1ea6e65 31f2f28 1ea6e65 31f2f28 1ea6e65 31f2f28 1ea6e65 31f2f28 1ea6e65 31f2f28 1ea6e65 31f2f28 1ea6e65 31f2f28 28ffb97 31f2f28 41a75ff 31f2f28 41a75ff 28ffb97 31f2f28 28ffb97 31f2f28 28ffb97 31f2f28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 |
"""
input: json file with video, audio, motion paths
output: igraph object with nodes containing video, audio, motion, position, velocity, axis_angle, previous, next, frame, fps
preprocess:
1. assume you have a video for one speaker in folder, listed in
-- video_a.mp4
-- video_b.mp4
run process_video.py to extract frames and audio
"""
import os
import smplx
import torch
import numpy as np
import cv2
import librosa
import igraph
import json
import utils.rotation_conversions as rc
from moviepy.editor import VideoClip, AudioFileClip, VideoFileClip
from tqdm import tqdm
import imageio
import tempfile
import argparse
def get_motion_reps_tensor(motion_tensor, smplx_model, pose_fps=30, device='cuda'):
bs, n, _ = motion_tensor.shape
motion_tensor = motion_tensor.float().to(device)
motion_tensor_reshaped = motion_tensor.reshape(bs * n, 165)
output = smplx_model(
betas=torch.zeros(bs * n, 300, device=device),
transl=torch.zeros(bs * n, 3, device=device),
expression=torch.zeros(bs * n, 100, device=device),
jaw_pose=torch.zeros(bs * n, 3, device=device),
global_orient=torch.zeros(bs * n, 3, device=device),
body_pose=motion_tensor_reshaped[:, 3:21 * 3 + 3],
left_hand_pose=motion_tensor_reshaped[:, 25 * 3:40 * 3],
right_hand_pose=motion_tensor_reshaped[:, 40 * 3:55 * 3],
return_joints=True,
leye_pose=torch.zeros(bs * n, 3, device=device),
reye_pose=torch.zeros(bs * n, 3, device=device),
)
joints = output['joints'].reshape(bs, n, 127, 3)[:, :, :55, :]
dt = 1 / pose_fps
init_vel = (joints[:, 1:2] - joints[:, 0:1]) / dt
middle_vel = (joints[:, 2:] - joints[:, :-2]) / (2 * dt)
final_vel = (joints[:, -1:] - joints[:, -2:-1]) / dt
vel = torch.cat([init_vel, middle_vel, final_vel], dim=1)
position = joints
rot_matrices = rc.axis_angle_to_matrix(motion_tensor.reshape(bs, n, 55, 3))
rot6d = rc.matrix_to_rotation_6d(rot_matrices).reshape(bs, n, 55, 6)
init_vel_ang = (motion_tensor[:, 1:2] - motion_tensor[:, 0:1]) / dt
middle_vel_ang = (motion_tensor[:, 2:] - motion_tensor[:, :-2]) / (2 * dt)
final_vel_ang = (motion_tensor[:, -1:] - motion_tensor[:, -2:-1]) / dt
angular_velocity = torch.cat([init_vel_ang, middle_vel_ang, final_vel_ang], dim=1).reshape(bs, n, 55, 3)
rep15d = torch.cat([position, vel, rot6d, angular_velocity], dim=3).reshape(bs, n, 55 * 15)
return {
"position": position,
"velocity": vel,
"rotation": rot6d,
"axis_angle": motion_tensor,
"angular_velocity": angular_velocity,
"rep15d": rep15d,
}
def get_motion_reps(motion, smplx_model, pose_fps=30):
gt_motion_tensor = motion["poses"]
n = gt_motion_tensor.shape[0]
bs = 1
gt_motion_tensor = torch.from_numpy(gt_motion_tensor).float().to(device).unsqueeze(0)
gt_motion_tensor_reshaped = gt_motion_tensor.reshape(bs * n, 165)
output = smplx_model(
betas=torch.zeros(bs * n, 300).to(device),
transl=torch.zeros(bs * n, 3).to(device),
expression=torch.zeros(bs * n, 100).to(device),
jaw_pose=torch.zeros(bs * n, 3).to(device),
global_orient=torch.zeros(bs * n, 3).to(device),
body_pose=gt_motion_tensor_reshaped[:, 3:21 * 3 + 3],
left_hand_pose=gt_motion_tensor_reshaped[:, 25 * 3:40 * 3],
right_hand_pose=gt_motion_tensor_reshaped[:, 40 * 3:55 * 3],
return_joints=True,
leye_pose=torch.zeros(bs * n, 3).to(device),
reye_pose=torch.zeros(bs * n, 3).to(device),
)
joints = output["joints"].detach().cpu().numpy().reshape(n, 127, 3)[:, :55, :]
dt = 1 / pose_fps
init_vel = (joints[1:2] - joints[0:1]) / dt
middle_vel = (joints[2:] - joints[:-2]) / (2 * dt)
final_vel = (joints[-1:] - joints[-2:-1]) / dt
vel = np.concatenate([init_vel, middle_vel, final_vel], axis=0)
position = joints
rot_matrices = rc.axis_angle_to_matrix(gt_motion_tensor.reshape(1, n, 55, 3))[0]
rot6d = rc.matrix_to_rotation_6d(rot_matrices).reshape(n, 55, 6).cpu().numpy()
init_vel = (motion["poses"][1:2] - motion["poses"][0:1]) / dt
middle_vel = (motion["poses"][2:] - motion["poses"][:-2]) / (2 * dt)
final_vel = (motion["poses"][-1:] - motion["poses"][-2:-1]) / dt
angular_velocity = np.concatenate([init_vel, middle_vel, final_vel], axis=0).reshape(n, 55, 3)
rep15d = np.concatenate([
position,
vel,
rot6d,
angular_velocity],
axis=2
).reshape(n, 55*15)
return {
"position": position,
"velocity": vel,
"rotation": rot6d,
"axis_angle": motion["poses"],
"angular_velocity": angular_velocity,
"rep15d": rep15d,
"trans": motion["trans"]
}
def create_graph(json_path, smplx_model):
fps = 30
data_meta = json.load(open(json_path, "r"))
graph = igraph.Graph(directed=True)
global_i = 0
for data_item in data_meta:
video_path = os.path.join(data_item['video_path'], data_item['video_id'] + ".mp4")
# audio_path = os.path.join(data_item['audio_path'], data_item['video_id'] + ".wav")
motion_path = os.path.join(data_item['motion_path'], data_item['video_id'] + ".npz")
video_id = data_item.get("video_id", "")
motion = np.load(motion_path, allow_pickle=True)
motion_reps = get_motion_reps(motion, smplx_model)
position = motion_reps['position']
velocity = motion_reps['velocity']
trans = motion_reps['trans']
axis_angle = motion_reps['axis_angle']
# audio, sr = librosa.load(audio_path, sr=None)
# audio = librosa.resample(audio, orig_sr=sr, target_sr=16000)
all_frames = []
reader = imageio.get_reader(video_path)
all_frames = []
for frame in reader:
all_frames.append(frame)
video_frames = np.array(all_frames)
min_frames = min(len(video_frames), position.shape[0])
position = position[:min_frames]
velocity = velocity[:min_frames]
video_frames = video_frames[:min_frames]
# print(min_frames)
for i in tqdm(range(min_frames)):
if i == 0:
previous = -1
next_node = global_i + 1
elif i == min_frames - 1:
previous = global_i - 1
next_node = -1
else:
previous = global_i - 1
next_node = global_i + 1
graph.add_vertex(
idx=global_i,
name=video_id,
motion=motion_reps,
position=position[i],
velocity=velocity[i],
axis_angle=axis_angle[i],
trans=trans[i],
# audio=audio[],
video=video_frames[i],
previous=previous,
next=next_node,
frame=i,
fps=fps,
)
global_i += 1
return graph
def create_edges(graph, threshold_edges):
adaptive_length = [-4, -3, -2, -1, 1, 2, 3, 4]
# print()
for i, node in enumerate(graph.vs):
current_position = node['position']
current_velocity = node['velocity']
current_trans = node['trans']
# print(current_position.shape, current_velocity.shape)
avg_position = np.zeros(current_position.shape[0])
avg_velocity = np.zeros(current_position.shape[0])
avg_trans = 0
count = 0
for node_offset in adaptive_length:
idx = i + node_offset
if idx < 0 or idx >= len(graph.vs):
continue
if node_offset < 0:
if graph.vs[idx]['next'] == -1:continue
else:
if graph.vs[idx]['previous'] == -1:continue
# add check
other_node = graph.vs[idx]
other_position = other_node['position']
other_velocity = other_node['velocity']
other_trans = other_node['trans']
# print(other_position.shape, other_velocity.shape)
avg_position += np.linalg.norm(current_position - other_position, axis=1)
avg_velocity += np.linalg.norm(current_velocity - other_velocity, axis=1)
avg_trans += np.linalg.norm(current_trans - other_trans, axis=0)
count += 1
if count == 0:
continue
threshold_position = avg_position / count
threshold_velocity = avg_velocity / count
threshold_trans = avg_trans / count
# print(threshold_position, threshold_velocity, threshold_trans)
for j, other_node in enumerate(graph.vs):
if i == j:
continue
if j == node['previous'] or j == node['next']:
graph.add_edge(i, j, is_continue=1)
continue
other_position = other_node['position']
other_velocity = other_node['velocity']
other_trans = other_node['trans']
position_similarity = np.linalg.norm(current_position - other_position, axis=1)
velocity_similarity = np.linalg.norm(current_velocity - other_velocity, axis=1)
trans_similarity = np.linalg.norm(current_trans - other_trans, axis=0)
if trans_similarity < threshold_trans:
if np.sum(position_similarity < threshold_edges*threshold_position) >= 45 and np.sum(velocity_similarity < threshold_edges*threshold_velocity) >= 45:
graph.add_edge(i, j, is_continue=0)
print(f"nodes: {len(graph.vs)}, edges: {len(graph.es)}")
in_degrees = graph.indegree()
out_degrees = graph.outdegree()
avg_in_degree = sum(in_degrees) / len(in_degrees)
avg_out_degree = sum(out_degrees) / len(out_degrees)
print(f"Average In-degree: {avg_in_degree}")
print(f"Average Out-degree: {avg_out_degree}")
print(f"max in degree: {max(in_degrees)}, max out degree: {max(out_degrees)}")
print(f"min in degree: {min(in_degrees)}, min out degree: {min(out_degrees)}")
# igraph.plot(graph, target="/content/test.png", bbox=(1000, 1000), vertex_size=10)
return graph
def random_walk(graph, walk_length, start_node=None):
if start_node is None:
start_node = np.random.choice(graph.vs)
walk = [start_node]
is_continue = [1]
for _ in range(walk_length):
current_node = walk[-1]
neighbor_indices = graph.neighbors(current_node.index, mode='OUT')
if not neighbor_indices:
break
next_idx = np.random.choice(neighbor_indices)
edge_id = graph.get_eid(current_node.index, next_idx)
is_cont = graph.es[edge_id]['is_continue']
walk.append(graph.vs[next_idx])
is_continue.append(is_cont)
return walk, is_continue
import subprocess
def path_visualization(graph, path, is_continue, save_path, verbose_continue=False, audio_path=None, return_motion=False):
all_frames = [node['video'] for node in path]
average_dis_continue = 1 - sum(is_continue) / len(is_continue)
if verbose_continue:
print("average_dis_continue:", average_dis_continue)
fps = graph.vs[0]['fps']
duration = len(all_frames) / fps
def make_frame(t):
idx = min(int(t * fps), len(all_frames) - 1)
return all_frames[idx]
video_only_path = 'video_only.mp4' # Temporary file
video_clip = VideoClip(make_frame, duration=duration)
video_clip.write_videofile(
video_only_path,
codec='libx264',
fps=fps,
audio=False
)
# Optionally, ensure audio and video durations match
if audio_path is not None:
audio_clip = AudioFileClip(audio_path)
video_duration = video_clip.duration
audio_duration = audio_clip.duration
if audio_duration > video_duration:
# Trim the audio
trimmed_audio_path = 'trimmed_audio.aac'
audio_clip = audio_clip.subclip(0, video_duration)
audio_clip.write_audiofile(trimmed_audio_path)
audio_input = trimmed_audio_path
else:
audio_input = audio_path
# Use FFmpeg to combine video and audio
ffmpeg_command = [
'ffmpeg', '-y',
'-i', video_only_path,
'-i', audio_input,
'-c:v', 'copy',
'-c:a', 'aac',
'-strict', 'experimental',
save_path
]
subprocess.check_call(ffmpeg_command)
# Clean up temporary files if necessary
os.remove(video_only_path)
if audio_input != audio_path:
os.remove(audio_input)
if return_motion:
all_motion = [node['axis_angle'] for node in path]
all_motion = np.stack(all_motion, 0)
return all_motion
def generate_transition_video(frame_start_path, frame_end_path, output_video_path):
import subprocess
import os
# Define the path to your model and inference script
model_path = "./frame-interpolation-pytorch/film_net_fp32.pt"
inference_script = "./frame-interpolation-pytorch/inference.py"
# Build the command to run the inference script
command = [
"python",
inference_script,
model_path,
frame_start_path,
frame_end_path,
"--save_path", output_video_path,
"--gpu",
"--frames", "3",
"--fps", "30"
]
# Run the command
try:
subprocess.run(command, check=True)
print(f"Generated transition video saved at {output_video_path}")
except subprocess.CalledProcessError as e:
print(f"Error occurred while generating transition video: {e}")
def path_visualization_v2(graph, path, is_continue, save_path, verbose_continue=False, audio_path=None, return_motion=False):
'''
this is for hugging face demo for fast interpolation. our paper use a diffusion based interpolation method
'''
all_frames = [node['video'] for node in path]
average_dis_continue = 1 - sum(is_continue) / len(is_continue)
if verbose_continue:
print("average_dis_continue:", average_dis_continue)
duration = len(all_frames) / graph.vs[0]['fps']
# First loop: Confirm where blending is needed
discontinuity_indices = []
for i, cont in enumerate(is_continue):
if cont == 0:
discontinuity_indices.append(i)
# Identify blending positions without overlapping
blend_positions = []
processed_frames = set()
for i in discontinuity_indices:
# Define the frames for blending: i-2 to i+2
start_idx = i - 2
end_idx = i + 2
# Check index boundaries
if start_idx < 0 or end_idx >= len(all_frames):
continue # Skip if indices are out of bounds
# Check for overlapping frames
overlap = any(idx in processed_frames for idx in range(i - 1, i + 2))
if overlap:
continue # Skip if frames have been processed
# Mark frames as processed
processed_frames.update(range(i - 1, i + 2))
blend_positions.append(i)
# Second loop: Perform blending
temp_dir = tempfile.mkdtemp(prefix='blending_frames_')
for i in tqdm(blend_positions):
start_frame_idx = i - 2
end_frame_idx = i + 2
frame_start = all_frames[start_frame_idx]
frame_end = all_frames[end_frame_idx]
frame_start_path = os.path.join(temp_dir, f'frame_{start_frame_idx}.png')
frame_end_path = os.path.join(temp_dir, f'frame_{end_frame_idx}.png')
# Save the start and end frames as images
imageio.imwrite(frame_start_path, frame_start)
imageio.imwrite(frame_end_path, frame_end)
# Call FiLM API to generate video
generated_video_path = os.path.join(temp_dir, f'generated_{start_frame_idx}_{end_frame_idx}.mp4')
generate_transition_video(frame_start_path, frame_end_path, generated_video_path)
# Read the generated video frames
reader = imageio.get_reader(generated_video_path)
generated_frames = [frame for frame in reader]
reader.close()
# Replace the middle three frames (i-1, i, i+1) in all_frames
total_generated_frames = len(generated_frames)
if total_generated_frames < 5:
print(f"Generated video has insufficient frames ({total_generated_frames}). Skipping blending at position {i}.")
continue
middle_start = 1 # Start index for middle 3 frames
middle_frames = generated_frames[middle_start:middle_start+3]
for idx, frame_idx in enumerate(range(i - 1, i + 2)):
all_frames[frame_idx] = middle_frames[idx]
# Create the video clip
def make_frame(t):
idx = min(int(t * graph.vs[0]['fps']), len(all_frames) - 1)
return all_frames[idx]
video_clip = VideoClip(make_frame, duration=duration)
if audio_path is not None:
audio_clip = AudioFileClip(audio_path)
video_clip = video_clip.set_audio(audio_clip)
video_clip.write_videofile(save_path, codec='libx264', fps=graph.vs[0]['fps'], audio_codec='aac')
if return_motion:
all_motion = [node['axis_angle'] for node in path]
all_motion = np.stack(all_motion, 0)
return all_motion
def graph_pruning(graph):
ascc = graph.clusters(mode="STRONG")
lascc = ascc.giant()
print(f"before nodes: {len(graph.vs)}, edges: {len(graph.es)}")
print(f"after nodes: {len(lascc.vs)}, edges: {len(lascc.es)}")
in_degrees = lascc.indegree()
out_degrees = lascc.outdegree()
avg_in_degree = sum(in_degrees) / len(in_degrees)
avg_out_degree = sum(out_degrees) / len(out_degrees)
print(f"Average In-degree: {avg_in_degree}")
print(f"Average Out-degree: {avg_out_degree}")
print(f"max in degree: {max(in_degrees)}, max out degree: {max(out_degrees)}")
print(f"min in degree: {min(in_degrees)}, min out degree: {min(out_degrees)}")
return lascc
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--json_save_path", type=str, default="")
parser.add_argument("--graph_save_path", type=str, default="")
parser.add_argument("--threshold", type=float, default=1.0)
args = parser.parse_args()
json_path = args.json_save_path
graph_path = args.graph_save_path
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
smplx_model = smplx.create(
"./emage/smplx_models/",
model_type='smplx',
gender='NEUTRAL_2020',
use_face_contour=False,
num_betas=300,
num_expression_coeffs=100,
ext='npz',
use_pca=False,
).to(device).eval()
# single_test
# graph = create_graph('/content/drive/MyDrive/003_Codes/TANGO/datasets/data_json/show_oliver_test/Abortion_Laws_-_Last_Week_Tonight_with_John_Oliver_HBO-DRauXXz6t0Y.webm.json')
graph = create_graph(json_path, smplx_model)
graph = create_edges(graph, args.threshold)
# pool_path = "/content/drive/MyDrive/003_Codes/TANGO-JointEmbedding/datasets/oliver_test/show-oliver-test.pkl"
# graph = igraph.Graph.Read_Pickle(fname=pool_path)
# graph = igraph.Graph.Read_Pickle(fname="/content/drive/MyDrive/003_Codes/TANGO-JointEmbedding/datasets/oliver_test/test.pkl")
# walk, is_continue = random_walk(graph, 100)
# motion = path_visualization(graph, walk, is_continue, "./test.mp4", audio_path=None, verbose_continue=True, return_motion=True)
# print(motion.shape)
save_graph = graph.write_pickle(fname=graph_path)
# graph = graph_pruning(graph)
# show-oliver
# json_path = "/content/drive/MyDrive/003_Codes/TANGO/datasets/data_json/show_oliver_test/"
# pre_node_path = "/content/drive/MyDrive/003_Codes/TANGO/datasets/cached_graph/show_oliver_test/"
# for json_file in tqdm(os.listdir(json_path)):
# graph = create_graph(os.path.join(json_path, json_file))
# graph = create_edges(graph)
# if not len(graph.vs) >= 1500:
# print(f"skip: {len(graph.vs)}", json_file)
# graph.write_pickle(fname=os.path.join(pre_node_path, json_file.split(".")[0] + ".pkl"))
# print(f"Graph saved at {json_file.split('.')[0]}.pkl") |