Spaces:
Running
on
A100
Running
on
A100
Commit
·
8f40af2
1
Parent(s):
8205b3e
Update app.py
Browse files
app.py
CHANGED
@@ -64,16 +64,6 @@ pipe.load_lora_weights(
|
|
64 |
use_auth_token=HF_TOKEN,
|
65 |
)
|
66 |
|
67 |
-
## Load papercut LoRA
|
68 |
-
#pipe.load_lora_weights(
|
69 |
-
# "TheLastBen/Papercut_SDXL",
|
70 |
-
# weight_name="papercut.safetensors",
|
71 |
-
# adapter_name="papercut",
|
72 |
-
#)
|
73 |
-
|
74 |
-
# Mix the LoRAs
|
75 |
-
#pipe.set_adapters(["lcm", "papercut"], adapter_weights=[1.0, 0.8])
|
76 |
-
|
77 |
compel_proc = Compel(
|
78 |
tokenizer=[pipe.tokenizer, pipe.tokenizer_2],
|
79 |
text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
|
@@ -123,7 +113,7 @@ css = """
|
|
123 |
with gr.Blocks(css=css) as demo:
|
124 |
with gr.Column(elem_id="container"):
|
125 |
gr.Markdown(
|
126 |
-
"""#
|
127 |
SDXL is loaded with a LCM-LoRA, giving it the super power of doing inference in as little as 4 steps. [Learn more on our blog](#) or [technical report](#).
|
128 |
""",
|
129 |
elem_id="intro",
|
@@ -145,12 +135,16 @@ with gr.Blocks(css=css) as demo:
|
|
145 |
randomize=True, minimum=0, maximum=12013012031030, label="Seed", step=1
|
146 |
)
|
147 |
with gr.Group():
|
148 |
-
gr.Markdown('''##
|
|
|
|
|
|
|
|
|
149 |
```py
|
150 |
from diffusers import DiffusionPipeline, LCMScheduler
|
151 |
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0").to("cuda")
|
152 |
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
153 |
-
pipe.load_lora_weights("lcm-sd/lcm-sdxl-lora")
|
154 |
|
155 |
results = pipe(
|
156 |
prompt="The spirit of a tamagotchi wandering in the city of Vienna",
|
|
|
64 |
use_auth_token=HF_TOKEN,
|
65 |
)
|
66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
compel_proc = Compel(
|
68 |
tokenizer=[pipe.tokenizer, pipe.tokenizer_2],
|
69 |
text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
|
|
|
113 |
with gr.Blocks(css=css) as demo:
|
114 |
with gr.Column(elem_id="container"):
|
115 |
gr.Markdown(
|
116 |
+
"""# SDXL in 4 steps with Latent Consistency LoRAs
|
117 |
SDXL is loaded with a LCM-LoRA, giving it the super power of doing inference in as little as 4 steps. [Learn more on our blog](#) or [technical report](#).
|
118 |
""",
|
119 |
elem_id="intro",
|
|
|
135 |
randomize=True, minimum=0, maximum=12013012031030, label="Seed", step=1
|
136 |
)
|
137 |
with gr.Group():
|
138 |
+
gr.Markdown('''## Running LCM-LoRAs it with `diffusers`
|
139 |
+
```bash
|
140 |
+
pip install diffusers==0.23.0
|
141 |
+
```
|
142 |
+
|
143 |
```py
|
144 |
from diffusers import DiffusionPipeline, LCMScheduler
|
145 |
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0").to("cuda")
|
146 |
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
147 |
+
pipe.load_lora_weights("lcm-sd/lcm-sdxl-lora") #yes, it is a real LoRA that gives superpowers to SDXL!
|
148 |
|
149 |
results = pipe(
|
150 |
prompt="The spirit of a tamagotchi wandering in the city of Vienna",
|