|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from dataclasses import dataclass |
|
from typing import Any, Dict, List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
AutoencoderTiny, |
|
ConfigMixin, |
|
DiffusionPipeline, |
|
SchedulerMixin, |
|
UNet2DConditionModel, |
|
ControlNetModel, |
|
logging, |
|
) |
|
from diffusers.configuration_utils import register_to_config |
|
from diffusers.image_processor import VaeImageProcessor, PipelineImageInput |
|
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput |
|
from diffusers.pipelines.stable_diffusion.safety_checker import ( |
|
StableDiffusionSafetyChecker, |
|
) |
|
from diffusers.utils import BaseOutput |
|
|
|
from diffusers.utils.torch_utils import randn_tensor, is_compiled_module |
|
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel |
|
|
|
|
|
import PIL.Image |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
class LatentConsistencyModelPipeline_controlnet(DiffusionPipeline): |
|
_optional_components = ["scheduler"] |
|
|
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
text_encoder: CLIPTextModel, |
|
tokenizer: CLIPTokenizer, |
|
controlnet: Union[ |
|
ControlNetModel, |
|
List[ControlNetModel], |
|
Tuple[ControlNetModel], |
|
MultiControlNetModel, |
|
], |
|
unet: UNet2DConditionModel, |
|
scheduler: "LCMScheduler", |
|
safety_checker: StableDiffusionSafetyChecker, |
|
feature_extractor: CLIPImageProcessor, |
|
requires_safety_checker: bool = True, |
|
): |
|
super().__init__() |
|
|
|
scheduler = ( |
|
scheduler |
|
if scheduler is not None |
|
else LCMScheduler_X( |
|
beta_start=0.00085, |
|
beta_end=0.0120, |
|
beta_schedule="scaled_linear", |
|
prediction_type="epsilon", |
|
) |
|
) |
|
|
|
self.register_modules( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
controlnet=controlnet, |
|
scheduler=scheduler, |
|
safety_checker=safety_checker, |
|
feature_extractor=feature_extractor, |
|
) |
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) |
|
self.control_image_processor = VaeImageProcessor( |
|
vae_scale_factor=self.vae_scale_factor, |
|
do_convert_rgb=True, |
|
do_normalize=False, |
|
) |
|
|
|
def _encode_prompt( |
|
self, |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
prompt_embeds: None, |
|
): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
prompt to be encoded |
|
device: (`torch.device`): |
|
torch device |
|
num_images_per_prompt (`int`): |
|
number of images that should be generated per prompt |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
""" |
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
pass |
|
elif prompt is not None and isinstance(prompt, list): |
|
len(prompt) |
|
else: |
|
prompt_embeds.shape[0] |
|
|
|
if prompt_embeds is None: |
|
text_inputs = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = self.tokenizer( |
|
prompt, padding="longest", return_tensors="pt" |
|
).input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[ |
|
-1 |
|
] and not torch.equal(text_input_ids, untruncated_ids): |
|
removed_text = self.tokenizer.batch_decode( |
|
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] |
|
) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}" |
|
) |
|
|
|
if ( |
|
hasattr(self.text_encoder.config, "use_attention_mask") |
|
and self.text_encoder.config.use_attention_mask |
|
): |
|
attention_mask = text_inputs.attention_mask.to(device) |
|
else: |
|
attention_mask = None |
|
|
|
prompt_embeds = self.text_encoder( |
|
text_input_ids.to(device), |
|
attention_mask=attention_mask, |
|
) |
|
prompt_embeds = prompt_embeds[0] |
|
|
|
if self.text_encoder is not None: |
|
prompt_embeds_dtype = self.text_encoder.dtype |
|
elif self.unet is not None: |
|
prompt_embeds_dtype = self.unet.dtype |
|
else: |
|
prompt_embeds_dtype = prompt_embeds.dtype |
|
|
|
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) |
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view( |
|
bs_embed * num_images_per_prompt, seq_len, -1 |
|
) |
|
|
|
|
|
return prompt_embeds |
|
|
|
def run_safety_checker(self, image, device, dtype): |
|
if self.safety_checker is None: |
|
has_nsfw_concept = None |
|
else: |
|
if torch.is_tensor(image): |
|
feature_extractor_input = self.image_processor.postprocess( |
|
image, output_type="pil" |
|
) |
|
else: |
|
feature_extractor_input = self.image_processor.numpy_to_pil(image) |
|
safety_checker_input = self.feature_extractor( |
|
feature_extractor_input, return_tensors="pt" |
|
).to(device) |
|
image, has_nsfw_concept = self.safety_checker( |
|
images=image, clip_input=safety_checker_input.pixel_values.to(dtype) |
|
) |
|
return image, has_nsfw_concept |
|
|
|
def prepare_control_image( |
|
self, |
|
image, |
|
width, |
|
height, |
|
batch_size, |
|
num_images_per_prompt, |
|
device, |
|
dtype, |
|
do_classifier_free_guidance=False, |
|
guess_mode=False, |
|
): |
|
image = self.control_image_processor.preprocess( |
|
image, height=height, width=width |
|
).to(dtype=dtype) |
|
image_batch_size = image.shape[0] |
|
|
|
if image_batch_size == 1: |
|
repeat_by = batch_size |
|
else: |
|
|
|
repeat_by = num_images_per_prompt |
|
|
|
image = image.repeat_interleave(repeat_by, dim=0) |
|
|
|
image = image.to(device=device, dtype=dtype) |
|
|
|
if do_classifier_free_guidance and not guess_mode: |
|
image = torch.cat([image] * 2) |
|
|
|
return image |
|
|
|
def prepare_latents( |
|
self, |
|
image, |
|
timestep, |
|
batch_size, |
|
num_channels_latents, |
|
height, |
|
width, |
|
dtype, |
|
device, |
|
latents=None, |
|
generator=None, |
|
): |
|
shape = ( |
|
batch_size, |
|
num_channels_latents, |
|
height // self.vae_scale_factor, |
|
width // self.vae_scale_factor, |
|
) |
|
|
|
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): |
|
raise ValueError( |
|
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" |
|
) |
|
|
|
image = image.to(device=device, dtype=dtype) |
|
|
|
|
|
|
|
if image.shape[1] == 4: |
|
init_latents = image |
|
|
|
else: |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
elif isinstance(generator, list): |
|
if isinstance(self.vae, AutoencoderTiny): |
|
init_latents = [ |
|
self.vae.encode(image[i : i + 1]).latents |
|
for i in range(batch_size) |
|
] |
|
else: |
|
init_latents = [ |
|
self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) |
|
for i in range(batch_size) |
|
] |
|
init_latents = torch.cat(init_latents, dim=0) |
|
else: |
|
if isinstance(self.vae, AutoencoderTiny): |
|
init_latents = self.vae.encode(image).latents |
|
else: |
|
init_latents = self.vae.encode(image).latent_dist.sample(generator) |
|
|
|
init_latents = self.vae.config.scaling_factor * init_latents |
|
|
|
if ( |
|
batch_size > init_latents.shape[0] |
|
and batch_size % init_latents.shape[0] == 0 |
|
): |
|
|
|
deprecation_message = ( |
|
f"You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial" |
|
" images (`image`). Initial images are now duplicating to match the number of text prompts. Note" |
|
" that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update" |
|
" your script to pass as many initial images as text prompts to suppress this warning." |
|
) |
|
|
|
additional_image_per_prompt = batch_size // init_latents.shape[0] |
|
init_latents = torch.cat( |
|
[init_latents] * additional_image_per_prompt, dim=0 |
|
) |
|
elif ( |
|
batch_size > init_latents.shape[0] |
|
and batch_size % init_latents.shape[0] != 0 |
|
): |
|
raise ValueError( |
|
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts." |
|
) |
|
else: |
|
init_latents = torch.cat([init_latents], dim=0) |
|
|
|
shape = init_latents.shape |
|
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
|
|
|
|
init_latents = self.scheduler.add_noise(init_latents, noise, timestep) |
|
latents = init_latents |
|
|
|
return latents |
|
|
|
if latents is None: |
|
latents = torch.randn(shape, dtype=dtype).to(device) |
|
else: |
|
latents = latents.to(device) |
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
return latents |
|
|
|
def get_w_embedding(self, w, embedding_dim=512, dtype=torch.float32): |
|
""" |
|
see https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 |
|
Args: |
|
timesteps: torch.Tensor: generate embedding vectors at these timesteps |
|
embedding_dim: int: dimension of the embeddings to generate |
|
dtype: data type of the generated embeddings |
|
Returns: |
|
embedding vectors with shape `(len(timesteps), embedding_dim)` |
|
""" |
|
assert len(w.shape) == 1 |
|
w = w * 1000.0 |
|
|
|
half_dim = embedding_dim // 2 |
|
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) |
|
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) |
|
emb = w.to(dtype)[:, None] * emb[None, :] |
|
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) |
|
if embedding_dim % 2 == 1: |
|
emb = torch.nn.functional.pad(emb, (0, 1)) |
|
assert emb.shape == (w.shape[0], embedding_dim) |
|
return emb |
|
|
|
def get_timesteps(self, num_inference_steps, strength, device): |
|
|
|
init_timestep = min(int(num_inference_steps * strength), num_inference_steps) |
|
|
|
t_start = max(num_inference_steps - init_timestep, 0) |
|
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] |
|
|
|
return timesteps, num_inference_steps - t_start |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
image: PipelineImageInput = None, |
|
control_image: PipelineImageInput = None, |
|
strength: float = 0.8, |
|
height: Optional[int] = 768, |
|
width: Optional[int] = 768, |
|
guidance_scale: float = 7.5, |
|
num_images_per_prompt: Optional[int] = 1, |
|
latents: Optional[torch.FloatTensor] = None, |
|
generator: Optional[torch.Generator] = None, |
|
num_inference_steps: int = 4, |
|
lcm_origin_steps: int = 50, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
controlnet_conditioning_scale: Union[float, List[float]] = 0.8, |
|
guess_mode: bool = True, |
|
control_guidance_start: Union[float, List[float]] = 0.0, |
|
control_guidance_end: Union[float, List[float]] = 1.0, |
|
): |
|
controlnet = ( |
|
self.controlnet._orig_mod |
|
if is_compiled_module(self.controlnet) |
|
else self.controlnet |
|
) |
|
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor |
|
width = width or self.unet.config.sample_size * self.vae_scale_factor |
|
if not isinstance(control_guidance_start, list) and isinstance( |
|
control_guidance_end, list |
|
): |
|
control_guidance_start = len(control_guidance_end) * [ |
|
control_guidance_start |
|
] |
|
elif not isinstance(control_guidance_end, list) and isinstance( |
|
control_guidance_start, list |
|
): |
|
control_guidance_end = len(control_guidance_start) * [control_guidance_end] |
|
elif not isinstance(control_guidance_start, list) and not isinstance( |
|
control_guidance_end, list |
|
): |
|
mult = ( |
|
len(controlnet.nets) |
|
if isinstance(controlnet, MultiControlNetModel) |
|
else 1 |
|
) |
|
control_guidance_start, control_guidance_end = mult * [ |
|
control_guidance_start |
|
], mult * [control_guidance_end] |
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
global_pool_conditions = ( |
|
controlnet.config.global_pool_conditions |
|
if isinstance(controlnet, ControlNetModel) |
|
else controlnet.nets[0].config.global_pool_conditions |
|
) |
|
guess_mode = guess_mode or global_pool_conditions |
|
|
|
prompt_embeds = self._encode_prompt( |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
prompt_embeds=prompt_embeds, |
|
) |
|
|
|
|
|
image = self.image_processor.preprocess(image) |
|
|
|
if isinstance(controlnet, ControlNetModel): |
|
control_image = self.prepare_control_image( |
|
image=control_image, |
|
width=width, |
|
height=height, |
|
batch_size=batch_size * num_images_per_prompt, |
|
num_images_per_prompt=num_images_per_prompt, |
|
device=device, |
|
dtype=controlnet.dtype, |
|
guess_mode=guess_mode, |
|
) |
|
elif isinstance(controlnet, MultiControlNetModel): |
|
control_images = [] |
|
|
|
for control_image_ in control_image: |
|
control_image_ = self.prepare_control_image( |
|
image=control_image_, |
|
width=width, |
|
height=height, |
|
batch_size=batch_size * num_images_per_prompt, |
|
num_images_per_prompt=num_images_per_prompt, |
|
device=device, |
|
dtype=controlnet.dtype, |
|
do_classifier_free_guidance=do_classifier_free_guidance, |
|
guess_mode=guess_mode, |
|
) |
|
|
|
control_images.append(control_image_) |
|
|
|
control_image = control_images |
|
else: |
|
assert False |
|
|
|
|
|
self.scheduler.set_timesteps(strength, num_inference_steps, lcm_origin_steps) |
|
|
|
|
|
timesteps = self.scheduler.timesteps |
|
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) |
|
|
|
print("timesteps: ", timesteps) |
|
|
|
|
|
num_channels_latents = self.unet.config.in_channels |
|
latents = self.prepare_latents( |
|
image, |
|
latent_timestep, |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
latents, |
|
) |
|
bs = batch_size * num_images_per_prompt |
|
|
|
|
|
w = torch.tensor(guidance_scale).repeat(bs) |
|
w_embedding = self.get_w_embedding(w, embedding_dim=256).to( |
|
device=device, dtype=latents.dtype |
|
) |
|
controlnet_keep = [] |
|
for i in range(len(timesteps)): |
|
keeps = [ |
|
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) |
|
for s, e in zip(control_guidance_start, control_guidance_end) |
|
] |
|
controlnet_keep.append( |
|
keeps[0] if isinstance(controlnet, ControlNetModel) else keeps |
|
) |
|
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
ts = torch.full((bs,), t, device=device, dtype=torch.long) |
|
latents = latents.to(prompt_embeds.dtype) |
|
if guess_mode: |
|
|
|
control_model_input = latents |
|
control_model_input = self.scheduler.scale_model_input( |
|
control_model_input, ts |
|
) |
|
controlnet_prompt_embeds = prompt_embeds |
|
else: |
|
control_model_input = latents |
|
controlnet_prompt_embeds = prompt_embeds |
|
if isinstance(controlnet_keep[i], list): |
|
cond_scale = [ |
|
c * s |
|
for c, s in zip( |
|
controlnet_conditioning_scale, controlnet_keep[i] |
|
) |
|
] |
|
else: |
|
controlnet_cond_scale = controlnet_conditioning_scale |
|
if isinstance(controlnet_cond_scale, list): |
|
controlnet_cond_scale = controlnet_cond_scale[0] |
|
cond_scale = controlnet_cond_scale * controlnet_keep[i] |
|
|
|
down_block_res_samples, mid_block_res_sample = self.controlnet( |
|
control_model_input, |
|
ts, |
|
encoder_hidden_states=controlnet_prompt_embeds, |
|
controlnet_cond=control_image, |
|
conditioning_scale=cond_scale, |
|
guess_mode=guess_mode, |
|
return_dict=False, |
|
) |
|
|
|
model_pred = self.unet( |
|
latents, |
|
ts, |
|
timestep_cond=w_embedding, |
|
encoder_hidden_states=prompt_embeds, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
down_block_additional_residuals=down_block_res_samples, |
|
mid_block_additional_residual=mid_block_res_sample, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
latents, denoised = self.scheduler.step( |
|
model_pred, i, t, latents, return_dict=False |
|
) |
|
|
|
|
|
|
|
progress_bar.update() |
|
|
|
denoised = denoised.to(prompt_embeds.dtype) |
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: |
|
self.unet.to("cpu") |
|
self.controlnet.to("cpu") |
|
torch.cuda.empty_cache() |
|
if not output_type == "latent": |
|
image = self.vae.decode( |
|
denoised / self.vae.config.scaling_factor, return_dict=False |
|
)[0] |
|
image, has_nsfw_concept = self.run_safety_checker( |
|
image, device, prompt_embeds.dtype |
|
) |
|
else: |
|
image = denoised |
|
has_nsfw_concept = None |
|
|
|
if has_nsfw_concept is None: |
|
do_denormalize = [True] * image.shape[0] |
|
else: |
|
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] |
|
|
|
image = self.image_processor.postprocess( |
|
image, output_type=output_type, do_denormalize=do_denormalize |
|
) |
|
|
|
if not return_dict: |
|
return (image, has_nsfw_concept) |
|
|
|
return StableDiffusionPipelineOutput( |
|
images=image, nsfw_content_detected=has_nsfw_concept |
|
) |
|
|
|
|
|
@dataclass |
|
|
|
class LCMSchedulerOutput(BaseOutput): |
|
""" |
|
Output class for the scheduler's `step` function output. |
|
Args: |
|
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): |
|
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the |
|
denoising loop. |
|
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): |
|
The predicted denoised sample `(x_{0})` based on the model output from the current timestep. |
|
`pred_original_sample` can be used to preview progress or for guidance. |
|
""" |
|
|
|
prev_sample: torch.FloatTensor |
|
denoised: Optional[torch.FloatTensor] = None |
|
|
|
|
|
|
|
def betas_for_alpha_bar( |
|
num_diffusion_timesteps, |
|
max_beta=0.999, |
|
alpha_transform_type="cosine", |
|
): |
|
""" |
|
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of |
|
(1-beta) over time from t = [0,1]. |
|
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up |
|
to that part of the diffusion process. |
|
Args: |
|
num_diffusion_timesteps (`int`): the number of betas to produce. |
|
max_beta (`float`): the maximum beta to use; use values lower than 1 to |
|
prevent singularities. |
|
alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar. |
|
Choose from `cosine` or `exp` |
|
Returns: |
|
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs |
|
""" |
|
if alpha_transform_type == "cosine": |
|
|
|
def alpha_bar_fn(t): |
|
return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 |
|
|
|
elif alpha_transform_type == "exp": |
|
|
|
def alpha_bar_fn(t): |
|
return math.exp(t * -12.0) |
|
|
|
else: |
|
raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}") |
|
|
|
betas = [] |
|
for i in range(num_diffusion_timesteps): |
|
t1 = i / num_diffusion_timesteps |
|
t2 = (i + 1) / num_diffusion_timesteps |
|
betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) |
|
return torch.tensor(betas, dtype=torch.float32) |
|
|
|
|
|
def rescale_zero_terminal_snr(betas): |
|
""" |
|
Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1) |
|
Args: |
|
betas (`torch.FloatTensor`): |
|
the betas that the scheduler is being initialized with. |
|
Returns: |
|
`torch.FloatTensor`: rescaled betas with zero terminal SNR |
|
""" |
|
|
|
alphas = 1.0 - betas |
|
alphas_cumprod = torch.cumprod(alphas, dim=0) |
|
alphas_bar_sqrt = alphas_cumprod.sqrt() |
|
|
|
|
|
alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone() |
|
alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone() |
|
|
|
|
|
alphas_bar_sqrt -= alphas_bar_sqrt_T |
|
|
|
|
|
alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T) |
|
|
|
|
|
alphas_bar = alphas_bar_sqrt**2 |
|
alphas = alphas_bar[1:] / alphas_bar[:-1] |
|
alphas = torch.cat([alphas_bar[0:1], alphas]) |
|
betas = 1 - alphas |
|
|
|
return betas |
|
|
|
|
|
class LCMScheduler_X(SchedulerMixin, ConfigMixin): |
|
""" |
|
`LCMScheduler` extends the denoising procedure introduced in denoising diffusion probabilistic models (DDPMs) with |
|
non-Markovian guidance. |
|
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic |
|
methods the library implements for all schedulers such as loading and saving. |
|
Args: |
|
num_train_timesteps (`int`, defaults to 1000): |
|
The number of diffusion steps to train the model. |
|
beta_start (`float`, defaults to 0.0001): |
|
The starting `beta` value of inference. |
|
beta_end (`float`, defaults to 0.02): |
|
The final `beta` value. |
|
beta_schedule (`str`, defaults to `"linear"`): |
|
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from |
|
`linear`, `scaled_linear`, or `squaredcos_cap_v2`. |
|
trained_betas (`np.ndarray`, *optional*): |
|
Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`. |
|
clip_sample (`bool`, defaults to `True`): |
|
Clip the predicted sample for numerical stability. |
|
clip_sample_range (`float`, defaults to 1.0): |
|
The maximum magnitude for sample clipping. Valid only when `clip_sample=True`. |
|
set_alpha_to_one (`bool`, defaults to `True`): |
|
Each diffusion step uses the alphas product value at that step and at the previous one. For the final step |
|
there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`, |
|
otherwise it uses the alpha value at step 0. |
|
steps_offset (`int`, defaults to 0): |
|
An offset added to the inference steps. You can use a combination of `offset=1` and |
|
`set_alpha_to_one=False` to make the last step use step 0 for the previous alpha product like in Stable |
|
Diffusion. |
|
prediction_type (`str`, defaults to `epsilon`, *optional*): |
|
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), |
|
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen |
|
Video](https://imagen.research.google/video/paper.pdf) paper). |
|
thresholding (`bool`, defaults to `False`): |
|
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such |
|
as Stable Diffusion. |
|
dynamic_thresholding_ratio (`float`, defaults to 0.995): |
|
The ratio for the dynamic thresholding method. Valid only when `thresholding=True`. |
|
sample_max_value (`float`, defaults to 1.0): |
|
The threshold value for dynamic thresholding. Valid only when `thresholding=True`. |
|
timestep_spacing (`str`, defaults to `"leading"`): |
|
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and |
|
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information. |
|
rescale_betas_zero_snr (`bool`, defaults to `False`): |
|
Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and |
|
dark samples instead of limiting it to samples with medium brightness. Loosely related to |
|
[`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506). |
|
""" |
|
|
|
|
|
order = 1 |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_train_timesteps: int = 1000, |
|
beta_start: float = 0.0001, |
|
beta_end: float = 0.02, |
|
beta_schedule: str = "linear", |
|
trained_betas: Optional[Union[np.ndarray, List[float]]] = None, |
|
clip_sample: bool = True, |
|
set_alpha_to_one: bool = True, |
|
steps_offset: int = 0, |
|
prediction_type: str = "epsilon", |
|
thresholding: bool = False, |
|
dynamic_thresholding_ratio: float = 0.995, |
|
clip_sample_range: float = 1.0, |
|
sample_max_value: float = 1.0, |
|
timestep_spacing: str = "leading", |
|
rescale_betas_zero_snr: bool = False, |
|
): |
|
if trained_betas is not None: |
|
self.betas = torch.tensor(trained_betas, dtype=torch.float32) |
|
elif beta_schedule == "linear": |
|
self.betas = torch.linspace( |
|
beta_start, beta_end, num_train_timesteps, dtype=torch.float32 |
|
) |
|
elif beta_schedule == "scaled_linear": |
|
|
|
self.betas = ( |
|
torch.linspace( |
|
beta_start**0.5, |
|
beta_end**0.5, |
|
num_train_timesteps, |
|
dtype=torch.float32, |
|
) |
|
** 2 |
|
) |
|
elif beta_schedule == "squaredcos_cap_v2": |
|
|
|
self.betas = betas_for_alpha_bar(num_train_timesteps) |
|
else: |
|
raise NotImplementedError( |
|
f"{beta_schedule} does is not implemented for {self.__class__}" |
|
) |
|
|
|
|
|
if rescale_betas_zero_snr: |
|
self.betas = rescale_zero_terminal_snr(self.betas) |
|
|
|
self.alphas = 1.0 - self.betas |
|
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) |
|
|
|
|
|
|
|
|
|
|
|
self.final_alpha_cumprod = ( |
|
torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0] |
|
) |
|
|
|
|
|
self.init_noise_sigma = 1.0 |
|
|
|
|
|
self.num_inference_steps = None |
|
self.timesteps = torch.from_numpy( |
|
np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64) |
|
) |
|
|
|
def scale_model_input( |
|
self, sample: torch.FloatTensor, timestep: Optional[int] = None |
|
) -> torch.FloatTensor: |
|
""" |
|
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the |
|
current timestep. |
|
Args: |
|
sample (`torch.FloatTensor`): |
|
The input sample. |
|
timestep (`int`, *optional*): |
|
The current timestep in the diffusion chain. |
|
Returns: |
|
`torch.FloatTensor`: |
|
A scaled input sample. |
|
""" |
|
return sample |
|
|
|
def _get_variance(self, timestep, prev_timestep): |
|
alpha_prod_t = self.alphas_cumprod[timestep] |
|
alpha_prod_t_prev = ( |
|
self.alphas_cumprod[prev_timestep] |
|
if prev_timestep >= 0 |
|
else self.final_alpha_cumprod |
|
) |
|
beta_prod_t = 1 - alpha_prod_t |
|
beta_prod_t_prev = 1 - alpha_prod_t_prev |
|
|
|
variance = (beta_prod_t_prev / beta_prod_t) * ( |
|
1 - alpha_prod_t / alpha_prod_t_prev |
|
) |
|
|
|
return variance |
|
|
|
|
|
def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor: |
|
""" |
|
"Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the |
|
prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by |
|
s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing |
|
pixels from saturation at each step. We find that dynamic thresholding results in significantly better |
|
photorealism as well as better image-text alignment, especially when using very large guidance weights." |
|
https://arxiv.org/abs/2205.11487 |
|
""" |
|
dtype = sample.dtype |
|
batch_size, channels, height, width = sample.shape |
|
|
|
if dtype not in (torch.float32, torch.float64): |
|
sample = ( |
|
sample.float() |
|
) |
|
|
|
|
|
sample = sample.reshape(batch_size, channels * height * width) |
|
|
|
abs_sample = sample.abs() |
|
|
|
s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1) |
|
s = torch.clamp( |
|
s, min=1, max=self.config.sample_max_value |
|
) |
|
|
|
s = s.unsqueeze(1) |
|
sample = ( |
|
torch.clamp(sample, -s, s) / s |
|
) |
|
|
|
sample = sample.reshape(batch_size, channels, height, width) |
|
sample = sample.to(dtype) |
|
|
|
return sample |
|
|
|
def set_timesteps( |
|
self, |
|
stength, |
|
num_inference_steps: int, |
|
lcm_origin_steps: int, |
|
device: Union[str, torch.device] = None, |
|
): |
|
""" |
|
Sets the discrete timesteps used for the diffusion chain (to be run before inference). |
|
Args: |
|
num_inference_steps (`int`): |
|
The number of diffusion steps used when generating samples with a pre-trained model. |
|
""" |
|
|
|
if num_inference_steps > self.config.num_train_timesteps: |
|
raise ValueError( |
|
f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:" |
|
f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle" |
|
f" maximal {self.config.num_train_timesteps} timesteps." |
|
) |
|
|
|
self.num_inference_steps = num_inference_steps |
|
|
|
|
|
c = self.config.num_train_timesteps // lcm_origin_steps |
|
lcm_origin_timesteps = ( |
|
np.asarray(list(range(1, int(lcm_origin_steps * stength) + 1))) * c - 1 |
|
) |
|
skipping_step = max(len(lcm_origin_timesteps) // num_inference_steps, 1) |
|
timesteps = lcm_origin_timesteps[::-skipping_step][ |
|
:num_inference_steps |
|
] |
|
|
|
self.timesteps = torch.from_numpy(timesteps.copy()).to(device) |
|
|
|
def get_scalings_for_boundary_condition_discrete(self, t): |
|
self.sigma_data = 0.5 |
|
|
|
|
|
c_skip = self.sigma_data**2 / ((t / 0.1) ** 2 + self.sigma_data**2) |
|
c_out = (t / 0.1) / ((t / 0.1) ** 2 + self.sigma_data**2) ** 0.5 |
|
return c_skip, c_out |
|
|
|
def step( |
|
self, |
|
model_output: torch.FloatTensor, |
|
timeindex: int, |
|
timestep: int, |
|
sample: torch.FloatTensor, |
|
eta: float = 0.0, |
|
use_clipped_model_output: bool = False, |
|
generator=None, |
|
variance_noise: Optional[torch.FloatTensor] = None, |
|
return_dict: bool = True, |
|
) -> Union[LCMSchedulerOutput, Tuple]: |
|
""" |
|
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion |
|
process from the learned model outputs (most often the predicted noise). |
|
Args: |
|
model_output (`torch.FloatTensor`): |
|
The direct output from learned diffusion model. |
|
timestep (`float`): |
|
The current discrete timestep in the diffusion chain. |
|
sample (`torch.FloatTensor`): |
|
A current instance of a sample created by the diffusion process. |
|
eta (`float`): |
|
The weight of noise for added noise in diffusion step. |
|
use_clipped_model_output (`bool`, defaults to `False`): |
|
If `True`, computes "corrected" `model_output` from the clipped predicted original sample. Necessary |
|
because predicted original sample is clipped to [-1, 1] when `self.config.clip_sample` is `True`. If no |
|
clipping has happened, "corrected" `model_output` would coincide with the one provided as input and |
|
`use_clipped_model_output` has no effect. |
|
generator (`torch.Generator`, *optional*): |
|
A random number generator. |
|
variance_noise (`torch.FloatTensor`): |
|
Alternative to generating noise with `generator` by directly providing the noise for the variance |
|
itself. Useful for methods such as [`CycleDiffusion`]. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~schedulers.scheduling_lcm.LCMSchedulerOutput`] or `tuple`. |
|
Returns: |
|
[`~schedulers.scheduling_utils.LCMSchedulerOutput`] or `tuple`: |
|
If return_dict is `True`, [`~schedulers.scheduling_lcm.LCMSchedulerOutput`] is returned, otherwise a |
|
tuple is returned where the first element is the sample tensor. |
|
""" |
|
if self.num_inference_steps is None: |
|
raise ValueError( |
|
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" |
|
) |
|
|
|
|
|
prev_timeindex = timeindex + 1 |
|
if prev_timeindex < len(self.timesteps): |
|
prev_timestep = self.timesteps[prev_timeindex] |
|
else: |
|
prev_timestep = timestep |
|
|
|
|
|
alpha_prod_t = self.alphas_cumprod[timestep] |
|
alpha_prod_t_prev = ( |
|
self.alphas_cumprod[prev_timestep] |
|
if prev_timestep >= 0 |
|
else self.final_alpha_cumprod |
|
) |
|
|
|
beta_prod_t = 1 - alpha_prod_t |
|
beta_prod_t_prev = 1 - alpha_prod_t_prev |
|
|
|
|
|
c_skip, c_out = self.get_scalings_for_boundary_condition_discrete(timestep) |
|
|
|
|
|
parameterization = self.config.prediction_type |
|
|
|
if parameterization == "epsilon": |
|
pred_x0 = (sample - beta_prod_t.sqrt() * model_output) / alpha_prod_t.sqrt() |
|
|
|
elif parameterization == "sample": |
|
pred_x0 = model_output |
|
|
|
elif parameterization == "v_prediction": |
|
pred_x0 = alpha_prod_t.sqrt() * sample - beta_prod_t.sqrt() * model_output |
|
|
|
|
|
denoised = c_out * pred_x0 + c_skip * sample |
|
|
|
|
|
|
|
if len(self.timesteps) > 1: |
|
noise = torch.randn(model_output.shape).to(model_output.device) |
|
prev_sample = ( |
|
alpha_prod_t_prev.sqrt() * denoised + beta_prod_t_prev.sqrt() * noise |
|
) |
|
else: |
|
prev_sample = denoised |
|
|
|
if not return_dict: |
|
return (prev_sample, denoised) |
|
|
|
return LCMSchedulerOutput(prev_sample=prev_sample, denoised=denoised) |
|
|
|
|
|
def add_noise( |
|
self, |
|
original_samples: torch.FloatTensor, |
|
noise: torch.FloatTensor, |
|
timesteps: torch.IntTensor, |
|
) -> torch.FloatTensor: |
|
|
|
alphas_cumprod = self.alphas_cumprod.to( |
|
device=original_samples.device, dtype=original_samples.dtype |
|
) |
|
timesteps = timesteps.to(original_samples.device) |
|
|
|
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 |
|
sqrt_alpha_prod = sqrt_alpha_prod.flatten() |
|
while len(sqrt_alpha_prod.shape) < len(original_samples.shape): |
|
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) |
|
|
|
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 |
|
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() |
|
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): |
|
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) |
|
|
|
noisy_samples = ( |
|
sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise |
|
) |
|
return noisy_samples |
|
|
|
|
|
def get_velocity( |
|
self, |
|
sample: torch.FloatTensor, |
|
noise: torch.FloatTensor, |
|
timesteps: torch.IntTensor, |
|
) -> torch.FloatTensor: |
|
|
|
alphas_cumprod = self.alphas_cumprod.to( |
|
device=sample.device, dtype=sample.dtype |
|
) |
|
timesteps = timesteps.to(sample.device) |
|
|
|
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 |
|
sqrt_alpha_prod = sqrt_alpha_prod.flatten() |
|
while len(sqrt_alpha_prod.shape) < len(sample.shape): |
|
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) |
|
|
|
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 |
|
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() |
|
while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape): |
|
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) |
|
|
|
velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample |
|
return velocity |
|
|
|
def __len__(self): |
|
return self.config.num_train_timesteps |
|
|