larryvrh commited on
Commit
73b1ea5
·
1 Parent(s): 2a566c9

Update for fix.

Browse files
Files changed (5) hide show
  1. README.md +1 -1
  2. flash_attn_triton.py +0 -861
  3. modeling.py +0 -4
  4. requirements.txt +2 -0
  5. tokenizers.py +0 -1
README.md CHANGED
@@ -5,7 +5,7 @@ colorFrom: red
5
  colorTo: blue
6
  sdk: gradio
7
  sdk_version: 4.1.1
8
- app_file: app.py
9
  pinned: false
10
  ---
11
 
 
5
  colorTo: blue
6
  sdk: gradio
7
  sdk_version: 4.1.1
8
+ app_file: webui.py
9
  pinned: false
10
  ---
11
 
flash_attn_triton.py DELETED
@@ -1,861 +0,0 @@
1
- """
2
- Copied from https://github.com/HazyResearch/flash-attention/blob/eff9fe6b8076df59d64d7a3f464696738a3c7c24/flash_attn/flash_attn_triton.py
3
- update imports to use 'triton_pre_mlir'
4
-
5
- *Experimental* implementation of FlashAttention in Triton.
6
- Tested with triton==2.0.0.dev20221202.
7
- Triton 2.0 has a new backend (MLIR) but seems like it doesn't yet work for head dimensions
8
- other than 64:
9
- https://github.com/openai/triton/blob/d376020f90002757eea3ea9475d4f7cfc2ec5ead/python/triton/ops/flash_attention.py#L207
10
- We'll update this implementation with the new Triton backend once this is fixed.
11
-
12
- We use the FlashAttention implementation from Phil Tillet a starting point.
13
- https://github.com/openai/triton/blob/master/python/tutorials/06-fused-attention.py
14
-
15
- Changes:
16
- - Implement both causal and non-causal attention.
17
- - Implement both self-attention and cross-attention.
18
- - Support arbitrary seqlens (not just multiples of 128), for both forward and backward.
19
- - Support all head dimensions up to 128 (not just 16, 32, 64, 128), for both forward and backward.
20
- - Support attention bias.
21
- - Speed up the forward pass a bit, and only store the LSE instead of m and l.
22
- - Make the backward for d=128 much faster by reducing register spilling.
23
- - Optionally parallelize the backward pass across seqlen_k, to deal with the case of
24
- small batch size * nheads.
25
-
26
- Caution:
27
- - This is an *experimental* implementation. The forward pass should be quite robust but
28
- I'm not 100% sure that the backward pass doesn't have race conditions (due to the Triton compiler).
29
- - This implementation has only been tested on A100.
30
- - If you plan to use headdim other than 64 and 128, you should test for race conditions
31
- (due to the Triton compiler), as done in tests/test_flash_attn.py
32
- "test_flash_attn_triton_race_condition". I've tested and fixed many race conditions
33
- for different head dimensions (40, 48, 64, 128, 80, 88, 96), but I'm still not 100% confident
34
- that there are none left for other head dimensions.
35
-
36
- Differences between this Triton version and the CUDA version:
37
- - Triton version doesn't support dropout.
38
- - Triton forward is generally faster than CUDA forward, while Triton backward is
39
- generally slower than CUDA backward. Overall Triton forward + backward is slightly slower
40
- than CUDA forward + backward.
41
- - Triton version doesn't support different sequence lengths in a batch (i.e., RaggedTensor/NestedTensor).
42
- - Triton version supports attention bias, while CUDA version doesn't.
43
- """
44
-
45
- import math
46
-
47
- import torch
48
- import os
49
-
50
- import triton_pre_mlir as triton
51
- import triton_pre_mlir.compiler
52
- import triton_pre_mlir.language as tl
53
- import functools
54
- import subprocess
55
-
56
- if 'CONDA_PREFIX' in os.environ and 'CUDA_HOME' not in os.environ:
57
- os.environ['CUDA_HOME'] = os.environ['CONDA_PREFIX']
58
-
59
-
60
- @functools.lru_cache()
61
- def libcuda_dirs():
62
- libs = subprocess.check_output(["ldconfig", "-p"]).decode()
63
- # each line looks like the following:
64
- # libcuda.so.1 (libc6,x86-64) => /lib/x86_64-linux-gnu/libcuda.so.1
65
- locs = [line.split()[-1] for line in libs.splitlines() if "libcuda.so" in line]
66
- dirs = [os.path.dirname(loc) for loc in locs]
67
- msg = 'libcuda.so cannot found!\n'
68
- if locs:
69
- msg += 'Possible files are located at %s.' % str(locs)
70
- msg += 'Please create a symlink of libcuda.so to any of the file.'
71
- assert any(os.path.exists(os.path.join(path, 'libcuda.so')) for path in dirs), msg
72
- return dirs
73
-
74
-
75
- triton_pre_mlir.compiler.libcuda_dirs = libcuda_dirs
76
-
77
-
78
- # Disabling autotune for now, set num_warps=4 if headdim=64 and num_warps=8 if headdim=128
79
- # @triton.autotune(
80
- # configs=[
81
- # triton.Config({"BLOCK_M": 128, "BLOCK_N": 128}, num_warps=4, num_stages=1),
82
- # # This config has a race condition when EVEN_M == False, disabling it for now.
83
- # # triton.Config({"BLOCK_M": 64, "BLOCK_N": 64}, num_warps=4, num_stages=1),
84
- # ],
85
- # key=['CACHE_KEY_SEQLEN_Q', 'CACHE_KEY_SEQLEN_K', 'BIAS_TYPE', 'IS_CAUSAL', 'BLOCK_HEADDIM']
86
- # )
87
- @triton.heuristics(
88
- {
89
- "EVEN_M": lambda args: args["seqlen_q"] % args["BLOCK_M"] == 0,
90
- "EVEN_N": lambda args: args["seqlen_k"] % args["BLOCK_N"] == 0,
91
- "EVEN_HEADDIM": lambda args: args["headdim"] == args["BLOCK_HEADDIM"],
92
- }
93
- )
94
- @triton.jit
95
- def _fwd_kernel(
96
- Q, K, V, Bias, Out,
97
- Lse, TMP, # NOTE: TMP is a scratchpad buffer to workaround a compiler bug
98
- softmax_scale,
99
- stride_qb, stride_qh, stride_qm,
100
- stride_kb, stride_kh, stride_kn,
101
- stride_vb, stride_vh, stride_vn,
102
- stride_bb, stride_bh, stride_bm,
103
- stride_ob, stride_oh, stride_om,
104
- nheads, seqlen_q, seqlen_k, seqlen_q_rounded, headdim,
105
- CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K,
106
- BIAS_TYPE: tl.constexpr,
107
- IS_CAUSAL: tl.constexpr,
108
- BLOCK_HEADDIM: tl.constexpr,
109
- EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr,
110
- BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr,
111
- ):
112
- start_m = tl.program_id(0)
113
- off_hb = tl.program_id(1)
114
- off_b = off_hb // nheads
115
- off_h = off_hb % nheads
116
- # off_b = tl.program_id(1)
117
- # off_h = tl.program_id(2)
118
- # off_hb = off_b * nheads + off_h
119
- # initialize offsets
120
- offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
121
- offs_n = tl.arange(0, BLOCK_N)
122
- offs_d = tl.arange(0, BLOCK_HEADDIM)
123
- # Initialize pointers to Q, K, V
124
- # Adding parenthesis around indexing might use int32 math instead of int64 math?
125
- # https://github.com/openai/triton/issues/741
126
- # I'm seeing a tiny bit of difference (5-7us)
127
- q_ptrs = Q + off_b * stride_qb + off_h * stride_qh + (offs_m[:, None] * stride_qm + offs_d[None, :])
128
- k_ptrs = K + off_b * stride_kb + off_h * stride_kh + (offs_n[:, None] * stride_kn + offs_d[None, :])
129
- v_ptrs = V + off_b * stride_vb + off_h * stride_vh + (offs_n[:, None] * stride_vn + offs_d[None, :])
130
- if BIAS_TYPE == 'vector':
131
- b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + offs_n
132
- elif BIAS_TYPE == 'matrix':
133
- b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + (offs_m[:, None] * stride_bm + offs_n[None, :])
134
- # initialize pointer to m and l
135
- t_ptrs = TMP + off_hb * seqlen_q_rounded + offs_m
136
- lse_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
137
- m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
138
- acc_o = tl.zeros([BLOCK_M, BLOCK_HEADDIM], dtype=tl.float32)
139
- # load q: it will stay in SRAM throughout
140
- # [2022-10-30] TD: Triton bug - in the case of EVEN_M=True and EVEN_N=False, if we just call
141
- # tl.load(q_ptrs), we get the wrong output!
142
- if EVEN_M & EVEN_N:
143
- if EVEN_HEADDIM:
144
- q = tl.load(q_ptrs)
145
- else:
146
- q = tl.load(q_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
147
- else:
148
- if EVEN_HEADDIM:
149
- q = tl.load(q_ptrs, mask=offs_m[:, None] < seqlen_q, other=0.0)
150
- else:
151
- q = tl.load(q_ptrs, mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
152
- other=0.0)
153
- # loop over k, v and update accumulator
154
- end_n = seqlen_k if not IS_CAUSAL else tl.minimum((start_m + 1) * BLOCK_M, seqlen_k)
155
- for start_n in range(0, end_n, BLOCK_N):
156
- start_n = tl.multiple_of(start_n, BLOCK_N)
157
- # -- compute qk ----
158
- if EVEN_N & EVEN_M: # If we just do "if EVEN_N", there seems to be some race condition
159
- if EVEN_HEADDIM:
160
- k = tl.load(k_ptrs + start_n * stride_kn)
161
- else:
162
- k = tl.load(k_ptrs + start_n * stride_kn, mask=offs_d[None, :] < headdim, other=0.0)
163
- else:
164
- if EVEN_HEADDIM:
165
- k = tl.load(k_ptrs + start_n * stride_kn, mask=(start_n + offs_n)[:, None] < seqlen_k,
166
- other=0.0)
167
- else:
168
- k = tl.load(k_ptrs + start_n * stride_kn,
169
- mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim),
170
- other=0.0)
171
- qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
172
- qk += tl.dot(q, k, trans_b=True)
173
- # Trying to combine the two masks seem to make the result wrong
174
- if not EVEN_N: # Need to mask out otherwise the softmax is wrong
175
- qk += tl.where((start_n + offs_n)[None, :] < seqlen_k, 0, float("-inf"))
176
- if IS_CAUSAL:
177
- qk += tl.where(offs_m[:, None] >= (start_n + offs_n)[None, :], 0, float("-inf"))
178
- if BIAS_TYPE != 'none':
179
- if BIAS_TYPE == 'vector':
180
- if EVEN_N:
181
- bias = tl.load(b_ptrs + start_n).to(tl.float32)
182
- else:
183
- bias = tl.load(b_ptrs + start_n, mask=(start_n + offs_n) < seqlen_k, other=0.0).to(tl.float32)
184
- bias = bias[None, :]
185
- elif BIAS_TYPE == 'matrix':
186
- if EVEN_M & EVEN_N:
187
- bias = tl.load(b_ptrs + start_n).to(tl.float32)
188
- else:
189
- bias = tl.load(b_ptrs + start_n,
190
- mask=(offs_m[:, None] < seqlen_q)
191
- & ((start_n + offs_n)[None, :] < seqlen_k),
192
- other=0.0).to(tl.float32)
193
- # Slightly faster to multiply the softmax_scale in the tl.exp below since the compiler
194
- # can then fuse the mult and add into an fma instruction. But if we have bias we need to
195
- # to multiply with softmax_scale here.
196
- qk = qk * softmax_scale + bias
197
- m_ij = tl.maximum(tl.max(qk, 1), lse_i)
198
- p = tl.exp(qk - m_ij[:, None])
199
- else:
200
- m_ij = tl.maximum(tl.max(qk, 1) * softmax_scale, lse_i)
201
- p = tl.exp(qk * softmax_scale - m_ij[:, None])
202
- l_ij = tl.sum(p, 1)
203
-
204
- # scale acc_o
205
- acc_o_scale = tl.exp(m_i - m_ij)
206
-
207
- # # -- update output accumulator --
208
- # BUG: have to store and immediately load
209
- tl.store(t_ptrs, acc_o_scale)
210
- acc_o_scale = tl.load(t_ptrs)
211
- acc_o = acc_o * acc_o_scale[:, None]
212
- # update acc_o
213
- if EVEN_N & EVEN_M: # If we just do "if EVEN_N", there seems to be some race condition
214
- if EVEN_HEADDIM:
215
- v = tl.load(v_ptrs + start_n * stride_vn)
216
- else:
217
- v = tl.load(v_ptrs + start_n * stride_vn, mask=offs_d[None, :] < headdim, other=0.0)
218
- else:
219
- if EVEN_HEADDIM:
220
- v = tl.load(v_ptrs + start_n * stride_vn, mask=(start_n + offs_n)[:, None] < seqlen_k,
221
- other=0.0)
222
- else:
223
- v = tl.load(v_ptrs + start_n * stride_vn,
224
- mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim),
225
- other=0.0)
226
- p = p.to(v.dtype)
227
- acc_o += tl.dot(p, v)
228
-
229
- # -- update statistics
230
- m_i = m_ij
231
- l_i_new = tl.exp(lse_i - m_ij) + l_ij
232
- lse_i = m_ij + tl.log(l_i_new)
233
-
234
- o_scale = tl.exp(m_i - lse_i)
235
- # BUG: have to store and immediately load
236
- tl.store(t_ptrs, o_scale)
237
- o_scale = tl.load(t_ptrs)
238
- acc_o = acc_o * o_scale[:, None]
239
- # rematerialize offsets to save registers
240
- start_m = tl.program_id(0)
241
- offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
242
- # write back l and m
243
- lse_ptrs = Lse + off_hb * seqlen_q_rounded + offs_m
244
- tl.store(lse_ptrs, lse_i)
245
- # initialize pointers to output
246
- offs_d = tl.arange(0, BLOCK_HEADDIM)
247
- out_ptrs = Out + off_b * stride_ob + off_h * stride_oh + (offs_m[:, None] * stride_om + offs_d[None, :])
248
- if EVEN_M:
249
- if EVEN_HEADDIM:
250
- tl.store(out_ptrs, acc_o)
251
- else:
252
- tl.store(out_ptrs, acc_o, mask=offs_d[None, :] < headdim)
253
- else:
254
- if EVEN_HEADDIM:
255
- tl.store(out_ptrs, acc_o, mask=offs_m[:, None] < seqlen_q)
256
- else:
257
- tl.store(out_ptrs, acc_o,
258
- mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim))
259
-
260
-
261
- @triton.jit
262
- def _bwd_preprocess_do_o_dot(
263
- Out, DO, Delta,
264
- stride_ob, stride_oh, stride_om,
265
- stride_dob, stride_doh, stride_dom,
266
- nheads, seqlen_q, seqlen_q_rounded, headdim,
267
- BLOCK_M: tl.constexpr, BLOCK_HEADDIM: tl.constexpr,
268
- ):
269
- start_m = tl.program_id(0)
270
- off_hb = tl.program_id(1)
271
- off_b = off_hb // nheads
272
- off_h = off_hb % nheads
273
- # initialize offsets
274
- offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
275
- offs_d = tl.arange(0, BLOCK_HEADDIM)
276
- # load
277
- o = tl.load(Out + off_b * stride_ob + off_h * stride_oh + offs_m[:, None] * stride_om + offs_d[None, :],
278
- mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0).to(tl.float32)
279
- do = tl.load(DO + off_b * stride_dob + off_h * stride_doh + offs_m[:, None] * stride_dom + offs_d[None, :],
280
- mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0).to(tl.float32)
281
- delta = tl.sum(o * do, axis=1)
282
- # write-back
283
- tl.store(Delta + off_hb * seqlen_q_rounded + offs_m, delta)
284
-
285
-
286
- @triton.jit
287
- def _bwd_store_dk_dv(
288
- dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim,
289
- EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr,
290
- ):
291
- # [2022-11-01] TD: Same bug. In the case of EVEN_N=True and EVEN_M=False,
292
- # if we just call tl.store(dv_ptrs), there's a race condition
293
- if EVEN_N & EVEN_M:
294
- if EVEN_HEADDIM:
295
- tl.store(dv_ptrs, dv)
296
- tl.store(dk_ptrs, dk)
297
- else:
298
- tl.store(dv_ptrs, dv, mask=offs_d[None, :] < headdim)
299
- tl.store(dk_ptrs, dk, mask=offs_d[None, :] < headdim)
300
- else:
301
- if EVEN_HEADDIM:
302
- tl.store(dv_ptrs, dv, mask=offs_n[:, None] < seqlen_k)
303
- tl.store(dk_ptrs, dk, mask=offs_n[:, None] < seqlen_k)
304
- else:
305
- tl.store(dv_ptrs, dv, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim))
306
- tl.store(dk_ptrs, dk, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim))
307
-
308
-
309
- @triton.jit
310
- def _bwd_kernel_one_col_block(
311
- start_n,
312
- Q, K, V, Bias,
313
- DO, DQ, DK, DV,
314
- LSE, D,
315
- softmax_scale,
316
- stride_qm, stride_kn, stride_vn, stride_bm,
317
- stride_dom, stride_dqm, stride_dkn, stride_dvn,
318
- seqlen_q, seqlen_k, headdim,
319
- ATOMIC_ADD: tl.constexpr,
320
- BIAS_TYPE: tl.constexpr,
321
- IS_CAUSAL: tl.constexpr,
322
- BLOCK_HEADDIM: tl.constexpr,
323
- EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr,
324
- BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr,
325
- ):
326
- # We need to make sure begin_m is a multiple of BLOCK_M (not BLOCK_N)
327
- begin_m = 0 if not IS_CAUSAL else ((start_n * BLOCK_N) // BLOCK_M) * BLOCK_M
328
- # initialize row/col offsets
329
- offs_qm = begin_m + tl.arange(0, BLOCK_M)
330
- offs_n = start_n * BLOCK_N + tl.arange(0, BLOCK_N)
331
- offs_m = tl.arange(0, BLOCK_M)
332
- offs_d = tl.arange(0, BLOCK_HEADDIM)
333
- # initialize pointers to value-like data
334
- q_ptrs = Q + (offs_qm[:, None] * stride_qm + offs_d[None, :])
335
- k_ptrs = K + (offs_n[:, None] * stride_kn + offs_d[None, :])
336
- v_ptrs = V + (offs_n[:, None] * stride_vn + offs_d[None, :])
337
- do_ptrs = DO + (offs_qm[:, None] * stride_dom + offs_d[None, :])
338
- dq_ptrs = DQ + (offs_qm[:, None] * stride_dqm + offs_d[None, :])
339
- if BIAS_TYPE == 'vector':
340
- b_ptrs = Bias + offs_n
341
- elif BIAS_TYPE == 'matrix':
342
- b_ptrs = Bias + (offs_qm[:, None] * stride_bm + offs_n[None, :])
343
- # initialize dv and dk
344
- dv = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
345
- dk = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
346
- # There seems to be some problem with Triton pipelining that makes results wrong for
347
- # headdim=64, seqlen=(113, 255), bias_type='matrix'. In this case the for loop
348
- # may have zero step, and pipelining with the bias matrix could screw it up.
349
- # So we just exit early.
350
- if begin_m >= seqlen_q:
351
- dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :])
352
- dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :])
353
- _bwd_store_dk_dv(dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim,
354
- EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM)
355
- return
356
- # k and v stay in SRAM throughout
357
- # [2022-10-30] TD: Same bug as the fwd. In the case of EVEN_N=True and EVEN_M=False,
358
- # if we just call tl.load(k_ptrs), we get the wrong output!
359
- if EVEN_N & EVEN_M:
360
- if EVEN_HEADDIM:
361
- k = tl.load(k_ptrs)
362
- v = tl.load(v_ptrs)
363
- else:
364
- k = tl.load(k_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
365
- v = tl.load(v_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
366
- else:
367
- if EVEN_HEADDIM:
368
- k = tl.load(k_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
369
- v = tl.load(v_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
370
- else:
371
- k = tl.load(k_ptrs, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim),
372
- other=0.0)
373
- v = tl.load(v_ptrs, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim),
374
- other=0.0)
375
- # loop over rows
376
- num_block_m = tl.cdiv(seqlen_q, BLOCK_M)
377
- for start_m in range(begin_m, num_block_m * BLOCK_M, BLOCK_M):
378
- start_m = tl.multiple_of(start_m, BLOCK_M)
379
- offs_m_curr = start_m + offs_m
380
- # load q, k, v, do on-chip
381
- # Same bug as below. Otherwise gives wrong result for headdim=40, seqlen=(128, 117)
382
- if EVEN_M & EVEN_HEADDIM:
383
- q = tl.load(q_ptrs)
384
- else:
385
- if EVEN_HEADDIM:
386
- q = tl.load(q_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0)
387
- else:
388
- q = tl.load(q_ptrs, mask=(offs_m_curr[:, None] < seqlen_q)
389
- & (offs_d[None, :] < headdim), other=0.0)
390
- # recompute p = softmax(qk, dim=-1).T
391
- qk = tl.dot(q, k, trans_b=True)
392
- # Trying to combine the two masks seem to make the result wrong
393
- if not EVEN_N: # Need to mask out otherwise the softmax is wrong
394
- qk = tl.where(offs_n[None, :] < seqlen_k, qk, float("-inf"))
395
- if IS_CAUSAL:
396
- qk = tl.where(offs_m_curr[:, None] >= (offs_n[None, :]), qk, float("-inf"))
397
- if BIAS_TYPE != 'none':
398
- tl.debug_barrier() # Race condition otherwise
399
- if BIAS_TYPE == 'vector':
400
- if EVEN_N:
401
- bias = tl.load(b_ptrs).to(tl.float32)
402
- else:
403
- bias = tl.load(b_ptrs, mask=offs_n < seqlen_k, other=0.0).to(tl.float32)
404
- bias = bias[None, :]
405
- elif BIAS_TYPE == 'matrix':
406
- if EVEN_M & EVEN_N:
407
- bias = tl.load(b_ptrs).to(tl.float32)
408
- else:
409
- bias = tl.load(b_ptrs,
410
- mask=(offs_m_curr[:, None] < seqlen_q)
411
- & (offs_n[None, :] < seqlen_k),
412
- other=0.0).to(tl.float32)
413
- qk = qk * softmax_scale + bias
414
- # There seems to be a race condition when headdim=48/96, and dq, dk, dv are wrong.
415
- # Also wrong for headdim=64.
416
- if not (EVEN_M & EVEN_HEADDIM):
417
- tl.debug_barrier()
418
- lse_i = tl.load(LSE + offs_m_curr)
419
- if BIAS_TYPE == 'none':
420
- p = tl.exp(qk * softmax_scale - lse_i[:, None])
421
- else:
422
- p = tl.exp(qk - lse_i[:, None])
423
- # compute dv
424
- # [2022-10-30] TD: A Triton bug: if EVEN_M=True and EVEN_HEADDIM=False, if we call
425
- # do = tl.load(do_ptrs, mask=offs_d[None, :] < headdim, other=0.0), we get wrong outputs
426
- # in the case of headdim=48/96, seqlen_q & seqlen_k >= 512. If headdim=40 or seqlen < 512,
427
- # the output is correct.
428
- if EVEN_M & EVEN_HEADDIM:
429
- do = tl.load(do_ptrs)
430
- else:
431
- # [2022-11-01] TD: Triton bug, there's a race condition if we just use m_mask and not d_mask.
432
- do = tl.load(do_ptrs, mask=(offs_m_curr[:, None] < seqlen_q)
433
- & (offs_d[None, :] < headdim), other=0.0)
434
- # if EVEN_M:
435
- # if EVEN_HEADDIM:
436
- # do = tl.load(do_ptrs)
437
- # else:
438
- # do = tl.load(do_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
439
- # else:
440
- # if EVEN_HEADDIM:
441
- # do = tl.load(do_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0)
442
- # else:
443
- # do = tl.load(do_ptrs, mask=(offs_m_curr[:, None] < seqlen_q)
444
- # & (offs_d[None, :] < headdim), other=0.0)
445
- dv += tl.dot(p.to(do.dtype), do, trans_a=True)
446
- # compute dp = dot(v, do)
447
- # There seems to be a race condition when headdim=48/96, and dq, dk are wrong.
448
- # Also wrong for headdim=128, seqlen=(108, 256), and ATOMIC_ADD=True
449
- # Also wrong for headdim=64, seqlen=(1023, 1024), and ATOMIC_ADD=False
450
- if not (EVEN_M & EVEN_HEADDIM):
451
- tl.debug_barrier()
452
- dp = tl.dot(do, v, trans_b=True)
453
- # There's a race condition for headdim=48
454
- if not EVEN_HEADDIM:
455
- tl.debug_barrier()
456
- # compute ds = p * (dp - delta[:, None])
457
- # Putting the subtraction after the dp matmul (instead of before) is slightly faster
458
- Di = tl.load(D + offs_m_curr)
459
- # Converting ds to q.dtype here reduces register pressure and makes it much faster
460
- # for BLOCK_HEADDIM=128
461
- ds = (p * (dp - Di[:, None]) * softmax_scale).to(q.dtype)
462
- # compute dk = dot(ds.T, q)
463
- dk += tl.dot(ds, q, trans_a=True)
464
- # compute dq
465
- if not (EVEN_M & EVEN_HEADDIM): # Otherewise there's a race condition when BIAS_TYPE='matrix'
466
- tl.debug_barrier()
467
- if not ATOMIC_ADD:
468
- if EVEN_M & EVEN_HEADDIM: # Race condition if we just do EVEN_M
469
- dq = tl.load(dq_ptrs, eviction_policy="evict_last")
470
- dq += tl.dot(ds, k)
471
- tl.store(dq_ptrs, dq, eviction_policy="evict_last")
472
- else:
473
- if EVEN_HEADDIM:
474
- dq = tl.load(dq_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0,
475
- eviction_policy="evict_last")
476
- dq += tl.dot(ds, k)
477
- tl.store(dq_ptrs, dq, mask=offs_m_curr[:, None] < seqlen_q,
478
- eviction_policy="evict_last")
479
- else:
480
- dq = tl.load(dq_ptrs,
481
- mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
482
- other=0.0, eviction_policy="evict_last")
483
- dq += tl.dot(ds, k)
484
- tl.store(dq_ptrs, dq,
485
- mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
486
- eviction_policy="evict_last")
487
- else: # If we're parallelizing across the seqlen_k dimension
488
- dq = tl.dot(ds, k)
489
- if EVEN_M & EVEN_HEADDIM: # Race condition if we just do EVEN_M
490
- tl.atomic_add(dq_ptrs, dq)
491
- else:
492
- if EVEN_HEADDIM:
493
- tl.atomic_add(dq_ptrs, dq, mask=offs_m_curr[:, None] < seqlen_q)
494
- else:
495
- tl.atomic_add(dq_ptrs, dq,
496
- mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim))
497
- # increment pointers
498
- dq_ptrs += BLOCK_M * stride_dqm
499
- q_ptrs += BLOCK_M * stride_qm
500
- do_ptrs += BLOCK_M * stride_dom
501
- if BIAS_TYPE == 'matrix':
502
- b_ptrs += BLOCK_M * stride_bm
503
- # write-back
504
- dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :])
505
- dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :])
506
- _bwd_store_dk_dv(dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim,
507
- EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM)
508
-
509
-
510
- def init_to_zero(name):
511
- return lambda nargs: nargs[name].zero_()
512
-
513
-
514
- # TODO: Change BLOCK_M and BLOCK_N according to your GPU and num_warps according to headdim
515
- @triton.autotune(
516
- configs=[
517
- triton.Config({"BLOCK_M": 64, "BLOCK_N": 64, "SEQUENCE_PARALLEL": False}, num_warps=4, num_stages=1, pre_hook=init_to_zero('DQ')),
518
- triton.Config({"BLOCK_M": 64, "BLOCK_N": 64, "SEQUENCE_PARALLEL": True}, num_warps=4, num_stages=1, pre_hook=init_to_zero('DQ')),
519
- # Other configs seem to give wrong results when seqlen_q % 128 != 0, disabling them for now
520
- # # Kernel is buggy (give wrong result) if we set BLOCK_m=128, BLOCK_n=64, num_warps=*4*
521
- # triton.Config({"BLOCK_M": 128, "BLOCK_N": 64, "SEQUENCE_PARALLEL": False}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')),
522
- # triton.Config({"BLOCK_M": 128, "BLOCK_N": 64, "SEQUENCE_PARALLEL": True}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')),
523
- # triton.Config({"BLOCK_M": 64, "BLOCK_N": 64, "SEQUENCE_PARALLEL": False}, num_warps=4, num_stages=1, pre_hook=init_to_zero('DQ')),
524
- # triton.Config({"BLOCK_M": 64, "BLOCK_N": 64, "SEQUENCE_PARALLEL": True}, num_warps=4, num_stages=1, pre_hook=init_to_zero('DQ')),
525
- ],
526
- key=['CACHE_KEY_SEQLEN_Q', 'CACHE_KEY_SEQLEN_K', 'BIAS_TYPE', 'IS_CAUSAL', 'BLOCK_HEADDIM'],
527
- )
528
- @triton.heuristics(
529
- {
530
- "EVEN_M": lambda args: args["seqlen_q"] % args["BLOCK_M"] == 0,
531
- "EVEN_N": lambda args: args["seqlen_k"] % args["BLOCK_N"] == 0,
532
- "EVEN_HEADDIM": lambda args: args["headdim"] == args["BLOCK_HEADDIM"],
533
- }
534
- )
535
- @triton.jit
536
- def _bwd_kernel(
537
- Q, K, V, Bias,
538
- DO, DQ, DK, DV,
539
- LSE, D,
540
- softmax_scale,
541
- stride_qb, stride_qh, stride_qm,
542
- stride_kb, stride_kh, stride_kn,
543
- stride_vb, stride_vh, stride_vn,
544
- stride_bb, stride_bh, stride_bm,
545
- stride_dob, stride_doh, stride_dom,
546
- stride_dqb, stride_dqh, stride_dqm,
547
- stride_dkb, stride_dkh, stride_dkn,
548
- stride_dvb, stride_dvh, stride_dvn,
549
- nheads, seqlen_q, seqlen_k, seqlen_q_rounded, headdim,
550
- CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K,
551
- BIAS_TYPE: tl.constexpr,
552
- IS_CAUSAL: tl.constexpr,
553
- BLOCK_HEADDIM: tl.constexpr,
554
- SEQUENCE_PARALLEL: tl.constexpr,
555
- EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr,
556
- BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr,
557
- ):
558
- off_hb = tl.program_id(1)
559
- off_b = off_hb // nheads
560
- off_h = off_hb % nheads
561
- # offset pointers for batch/head
562
- Q += off_b * stride_qb + off_h * stride_qh
563
- K += off_b * stride_kb + off_h * stride_kh
564
- V += off_b * stride_vb + off_h * stride_vh
565
- DO += off_b * stride_dob + off_h * stride_doh
566
- DQ += off_b * stride_dqb + off_h * stride_dqh
567
- DK += off_b * stride_dkb + off_h * stride_dkh
568
- DV += off_b * stride_dvb + off_h * stride_dvh
569
- if BIAS_TYPE != 'none':
570
- Bias += off_b * stride_bb + off_h * stride_bh
571
- # pointer to row-wise quantities in value-like data
572
- D += off_hb * seqlen_q_rounded
573
- LSE += off_hb * seqlen_q_rounded
574
- if not SEQUENCE_PARALLEL:
575
- num_block_n = tl.cdiv(seqlen_k, BLOCK_N)
576
- for start_n in range(0, num_block_n):
577
- _bwd_kernel_one_col_block(
578
- start_n,
579
- Q, K, V, Bias,
580
- DO, DQ, DK, DV,
581
- LSE, D,
582
- softmax_scale,
583
- stride_qm, stride_kn, stride_vn, stride_bm,
584
- stride_dom, stride_dqm, stride_dkn, stride_dvn,
585
- seqlen_q, seqlen_k, headdim,
586
- ATOMIC_ADD=False,
587
- BIAS_TYPE=BIAS_TYPE,
588
- IS_CAUSAL=IS_CAUSAL,
589
- BLOCK_HEADDIM=BLOCK_HEADDIM,
590
- EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM,
591
- BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N
592
- )
593
- else:
594
- start_n = tl.program_id(0)
595
- _bwd_kernel_one_col_block(
596
- start_n,
597
- Q, K, V, Bias,
598
- DO, DQ, DK, DV,
599
- LSE, D,
600
- softmax_scale,
601
- stride_qm, stride_kn, stride_vn, stride_bm,
602
- stride_dom, stride_dqm, stride_dkn, stride_dvn,
603
- seqlen_q, seqlen_k, headdim,
604
- ATOMIC_ADD=True,
605
- BIAS_TYPE=BIAS_TYPE,
606
- IS_CAUSAL=IS_CAUSAL,
607
- BLOCK_HEADDIM=BLOCK_HEADDIM,
608
- EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM,
609
- BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N
610
- )
611
-
612
-
613
- def _flash_attn_forward(q, k, v, bias=None, causal=False, softmax_scale=None):
614
- # shape constraints
615
- batch, seqlen_q, nheads, d = q.shape
616
- _, seqlen_k, _, _ = k.shape
617
- assert k.shape == (batch, seqlen_k, nheads, d)
618
- assert v.shape == (batch, seqlen_k, nheads, d)
619
- assert d <= 128, 'FlashAttention only support head dimensions up to 128'
620
- assert q.dtype == k.dtype == v.dtype, 'All tensors must have the same type'
621
- assert q.dtype in [torch.float16, torch.bfloat16], 'Only support fp16 and bf16'
622
- assert q.is_cuda and k.is_cuda and v.is_cuda
623
- softmax_scale = softmax_scale or 1.0 / math.sqrt(d)
624
-
625
- has_bias = bias is not None
626
- bias_type = 'none'
627
- if has_bias:
628
- assert bias.dtype in [q.dtype, torch.float]
629
- assert bias.is_cuda
630
- assert bias.dim() == 4
631
- if bias.stride(-1) != 1:
632
- bias = bias.contiguous()
633
- if bias.shape[2:] == (1, seqlen_k):
634
- bias_type = 'vector'
635
- elif bias.shape[2:] == (seqlen_q, seqlen_k):
636
- bias_type = 'matrix'
637
- else:
638
- raise RuntimeError('Last 2 dimensions of bias must be (1, seqlen_k)'
639
- ' or (seqlen_q, seqlen_k)')
640
- bias = bias.expand(batch, nheads, seqlen_q, seqlen_k)
641
- bias_strides = (bias.stride(0), bias.stride(1), bias.stride(2)) if has_bias else (0, 0, 0)
642
-
643
- seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128
644
- lse = torch.empty((batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32)
645
- tmp = torch.empty((batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32)
646
- o = torch.empty_like(q)
647
-
648
- BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16)
649
- BLOCK = 128
650
- num_warps = 4 if d <= 64 else 8
651
- grid = lambda META: (triton.cdiv(seqlen_q, META["BLOCK_M"]), batch * nheads)
652
- _fwd_kernel[grid](
653
- q, k, v, bias, o,
654
- lse, tmp,
655
- softmax_scale,
656
- q.stride(0), q.stride(2), q.stride(1),
657
- k.stride(0), k.stride(2), k.stride(1),
658
- v.stride(0), v.stride(2), v.stride(1),
659
- *bias_strides,
660
- o.stride(0), o.stride(2), o.stride(1),
661
- nheads, seqlen_q, seqlen_k, seqlen_q_rounded, d,
662
- seqlen_q // 32, seqlen_k // 32, # key for triton cache (limit number of compilations)
663
- # Can't use kwargs here because triton autotune expects key to be args, not kwargs
664
- # IS_CAUSAL=causal, BLOCK_HEADDIM=d,
665
- bias_type, causal, BLOCK_HEADDIM,
666
- BLOCK_M=BLOCK, BLOCK_N=BLOCK,
667
- num_warps=num_warps,
668
- num_stages=1,
669
- )
670
- return o, lse, softmax_scale # softmax_scale could have been updated
671
-
672
-
673
- def _flash_attn_backward(do, q, k, v, o, lse, dq, dk, dv, bias=None, causal=False, softmax_scale=None):
674
- # Make sure that the last dimension is contiguous
675
- if do.stride(-1) != 1:
676
- do = do.contiguous()
677
- batch, seqlen_q, nheads, d = q.shape
678
- _, seqlen_k, _, _ = k.shape
679
- # assert d in {16, 32, 64, 128}
680
- assert d <= 128
681
- seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128
682
- assert lse.shape == (batch, nheads, seqlen_q_rounded)
683
- assert q.stride(-1) == k.stride(-1) == v.stride(-1) == o.stride(-1) == 1
684
- assert dq.stride(-1) == dk.stride(-1) == dv.stride(-1) == 1
685
- softmax_scale = softmax_scale or 1.0 / math.sqrt(d)
686
- # dq_accum = torch.zeros_like(q, dtype=torch.float32)
687
- dq_accum = torch.empty_like(q, dtype=torch.float32)
688
- delta = torch.empty_like(lse)
689
- # delta = torch.zeros_like(lse)
690
-
691
- BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16)
692
- grid = lambda META: (triton.cdiv(seqlen_q, META["BLOCK_M"]), batch * nheads)
693
- _bwd_preprocess_do_o_dot[grid](
694
- o, do, delta,
695
- o.stride(0), o.stride(2), o.stride(1),
696
- do.stride(0), do.stride(2), do.stride(1),
697
- nheads, seqlen_q, seqlen_q_rounded, d,
698
- BLOCK_M=128, BLOCK_HEADDIM=BLOCK_HEADDIM,
699
- )
700
-
701
- has_bias = bias is not None
702
- bias_type = 'none'
703
- if has_bias:
704
- assert bias.dtype in [q.dtype, torch.float]
705
- assert bias.is_cuda
706
- assert bias.dim() == 4
707
- assert bias.stride(-1) == 1
708
- if bias.shape[2:] == (1, seqlen_k):
709
- bias_type = 'vector'
710
- elif bias.shape[2:] == (seqlen_q, seqlen_k):
711
- bias_type = 'matrix'
712
- else:
713
- raise RuntimeError('Last 2 dimensions of bias must be (1, seqlen_k)'
714
- ' or (seqlen_q, seqlen_k)')
715
- bias = bias.expand(batch, nheads, seqlen_q, seqlen_k)
716
- bias_strides = (bias.stride(0), bias.stride(1), bias.stride(2)) if has_bias else (0, 0, 0)
717
-
718
- # BLOCK_M = 128
719
- # BLOCK_N = 64
720
- # num_warps = 4
721
- grid = lambda META: (triton.cdiv(seqlen_k, META["BLOCK_N"]) if META["SEQUENCE_PARALLEL"] else 1,
722
- batch * nheads)
723
- _bwd_kernel[grid](
724
- q, k, v, bias,
725
- do, dq_accum, dk, dv,
726
- lse, delta,
727
- softmax_scale,
728
- q.stride(0), q.stride(2), q.stride(1),
729
- k.stride(0), k.stride(2), k.stride(1),
730
- v.stride(0), v.stride(2), v.stride(1),
731
- *bias_strides,
732
- do.stride(0), do.stride(2), do.stride(1),
733
- dq_accum.stride(0), dq_accum.stride(2), dq_accum.stride(1),
734
- dk.stride(0), dk.stride(2), dk.stride(1),
735
- dv.stride(0), dv.stride(2), dv.stride(1),
736
- nheads, seqlen_q, seqlen_k, seqlen_q_rounded, d,
737
- seqlen_q // 32, seqlen_k // 32, # key for triton cache (limit number of compilations)
738
- # Can't use kwargs here because triton autotune expects key to be args, not kwargs
739
- # IS_CAUSAL=causal, BLOCK_HEADDIM=d,
740
- bias_type, causal, BLOCK_HEADDIM,
741
- # SEQUENCE_PARALLEL=False,
742
- # BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N,
743
- # num_warps=num_warps,
744
- # num_stages=1,
745
- )
746
- dq.copy_(dq_accum)
747
-
748
-
749
- class FlashAttnQKVPackedFunc(torch.autograd.Function):
750
-
751
- @staticmethod
752
- def forward(ctx, qkv, bias=None, causal=False, softmax_scale=None):
753
- """
754
- qkv: (batch, seqlen, 3, nheads, headdim)
755
- bias: optional, shape broadcastible to (batch, nheads, seqlen, seqlen).
756
- For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen).
757
- ALiBi mask for non-causal would have shape (1, nheads, seqlen, seqlen)
758
- """
759
- # Make sure that the last dimension is contiguous
760
- if qkv.stride(-1) != 1:
761
- qkv = qkv.contiguous()
762
- o, lse, ctx.softmax_scale = _flash_attn_forward(
763
- qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], bias=bias, causal=causal,
764
- softmax_scale=softmax_scale
765
- )
766
- ctx.save_for_backward(qkv, o, lse, bias)
767
- ctx.causal = causal
768
- return o
769
-
770
- @staticmethod
771
- def backward(ctx, do):
772
- qkv, o, lse, bias = ctx.saved_tensors
773
- assert not ctx.needs_input_grad[1], 'FlashAttention does not support bias gradient yet'
774
- # Triton's autotune causes the Tensor._version to change, and so Pytorch autograd
775
- # does a memcpy. To avoid this we run in inference_mode, which doesn't track the version.
776
- with torch.inference_mode():
777
- dqkv = torch.empty_like(qkv)
778
- _flash_attn_backward(do, qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], o, lse,
779
- dqkv[:, :, 0], dqkv[:, :, 1], dqkv[:, :, 2],
780
- bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale)
781
- return dqkv, None, None, None
782
-
783
-
784
- flash_attn_qkvpacked_func = FlashAttnQKVPackedFunc.apply
785
-
786
-
787
- class FlashAttnKVPackedFunc(torch.autograd.Function):
788
-
789
- @staticmethod
790
- def forward(ctx, q, kv, bias=None, causal=False, softmax_scale=None):
791
- """
792
- q: (batch, seqlen_q, nheads, headdim)
793
- kv: (batch, seqlen_k, 2, nheads, headdim)
794
- bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k).
795
- For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k).
796
- ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k)
797
- """
798
- # Make sure that the last dimension is contiguous
799
- q, kv = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, kv]]
800
- o, lse, ctx.softmax_scale = _flash_attn_forward(
801
- q, kv[:, :, 0], kv[:, :, 1], bias=bias, causal=causal, softmax_scale=softmax_scale
802
- )
803
- ctx.save_for_backward(q, kv, o, lse, bias)
804
- ctx.causal = causal
805
- return o
806
-
807
- @staticmethod
808
- def backward(ctx, do):
809
- q, kv, o, lse, bias = ctx.saved_tensors
810
- if len(ctx.needs_input_grad) >= 3:
811
- assert not ctx.needs_input_grad[2], 'FlashAttention does not support bias gradient yet'
812
- # Triton's autotune causes the Tensor._version to change, and so Pytorch autograd
813
- # does a memcpy. To avoid this we run in inference_mode, which doesn't track the version.
814
- with torch.inference_mode():
815
- dq = torch.empty_like(q)
816
- dkv = torch.empty_like(kv)
817
- _flash_attn_backward(do, q, kv[:, :, 0], kv[:, :, 1], o, lse,
818
- dq, dkv[:, :, 0], dkv[:, :, 1],
819
- bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale)
820
- return dq, dkv, None, None, None
821
-
822
-
823
- flash_attn_kvpacked_func = FlashAttnKVPackedFunc.apply
824
-
825
-
826
- class FlashAttnFunc(torch.autograd.Function):
827
-
828
- @staticmethod
829
- def forward(ctx, q, k, v, bias=None, causal=False, softmax_scale=None):
830
- """
831
- q: (batch_size, seqlen_q, nheads, headdim)
832
- k, v: (batch_size, seqlen_k, nheads, headdim)
833
- bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k).
834
- For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k).
835
- ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k)
836
- """
837
- # Make sure that the last dimension is contiguous
838
- q, k, v = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, k, v]]
839
- o, lse, ctx.softmax_scale = _flash_attn_forward(
840
- q, k, v, bias=bias, causal=causal, softmax_scale=softmax_scale
841
- )
842
- ctx.save_for_backward(q, k, v, o, lse, bias)
843
- ctx.causal = causal
844
- return o
845
-
846
- @staticmethod
847
- def backward(ctx, do):
848
- q, k, v, o, lse, bias = ctx.saved_tensors
849
- assert not ctx.needs_input_grad[3], 'FlashAttention does not support bias gradient yet'
850
- # Triton's autotune causes the Tensor._version to change, and so Pytorch autograd
851
- # does a memcpy. To avoid this we run in inference_mode, which doesn't track the version.
852
- with torch.inference_mode():
853
- dq = torch.empty_like(q)
854
- dk = torch.empty_like(k)
855
- dv = torch.empty_like(v)
856
- _flash_attn_backward(do, q, k, v, o, lse, dq, dk, dv,
857
- bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale)
858
- return dq, dk, dv, None, None, None
859
-
860
-
861
- flash_attn_func = FlashAttnFunc.apply
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
modeling.py CHANGED
@@ -3,11 +3,8 @@ from torch import nn
3
  from dataclasses import dataclass
4
  from enum import Enum
5
  from typing import *
6
- from flash_attn import flash_attn_func
7
- from flash_attn_triton import flash_attn_func as flash_attn_func_triton
8
  from math import ceil
9
 
10
-
11
  class AttentionBackend(Enum):
12
  Naive = 0
13
  FlashAttentionCuda = 1
@@ -18,7 +15,6 @@ global_config = {
18
  'attn_backend': AttentionBackend.Naive
19
  }
20
 
21
-
22
  @dataclass
23
  class TransformerConfig:
24
  vocab_size: int = -1,
 
3
  from dataclasses import dataclass
4
  from enum import Enum
5
  from typing import *
 
 
6
  from math import ceil
7
 
 
8
  class AttentionBackend(Enum):
9
  Naive = 0
10
  FlashAttentionCuda = 1
 
15
  'attn_backend': AttentionBackend.Naive
16
  }
17
 
 
18
  @dataclass
19
  class TransformerConfig:
20
  vocab_size: int = -1,
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ torch
2
+ gradio
tokenizers.py CHANGED
@@ -2,7 +2,6 @@ import time
2
  from typing import *
3
  import re
4
  import json
5
- import numba
6
 
7
 
8
  def sample_vocab(tokens: Iterable[str], vocab_size: Optional[int] = None,
 
2
  from typing import *
3
  import re
4
  import json
 
5
 
6
 
7
  def sample_vocab(tokens: Iterable[str], vocab_size: Optional[int] = None,