kzuri commited on
Commit
3b33e19
·
verified ·
1 Parent(s): fb7ad84

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -22
app.py CHANGED
@@ -38,32 +38,14 @@ def ner(
38
  with gr.Blocks(title="GLiNER-medium-v2.1") as demo:
39
  gr.Markdown(
40
  """
41
- # GLiNER-medium-v2.1, zero-shot NER
42
 
43
- GLiNER is a Named Entity Recognition (NER) model capable of identifying any entity type using a bidirectional transformer encoder (BERT-like). It provides a practical alternative to traditional NER models, which are limited to predefined entities, and Large Language Models (LLMs) that, despite their flexibility, are costly and large for resource-constrained scenarios. This model has the commercially permissive Apache 2.0 license.
44
 
45
- ## Links
46
-
47
- * Model: https://huggingface.co/urchade/gliner_medium-v2.1
48
- * All GLiNER models: https://huggingface.co/models?library=gliner
49
- * Paper: https://arxiv.org/abs/2311.08526
50
- * Repository: https://github.com/urchade/GLiNER
51
  """
52
  )
53
- with gr.Accordion("How to run this model locally", open=False):
54
- gr.Markdown(
55
- """
56
- ## Installation
57
- To use this model, you must install the GLiNER Python library:
58
- ```
59
- !pip install gliner
60
- ```
61
-
62
- ## Usage
63
- Once you've downloaded the GLiNER library, you can import the GLiNER class. You can then load this model using `GLiNER.from_pretrained` and predict entities with `predict_entities`.
64
- """
65
- )
66
-
67
  input_text = gr.Textbox(
68
  value=examples[0][0], label="Text input", placeholder="Enter your text here"
69
  )
 
38
  with gr.Blocks(title="GLiNER-medium-v2.1") as demo:
39
  gr.Markdown(
40
  """
41
+ # GLiNER bio finetuned model
42
 
43
+ Devarsh Patel's assignment submission for Full Stack Developer at Healthy Vignettes.
44
 
45
+ Email me at: [email protected]
 
 
 
 
 
46
  """
47
  )
48
+
 
 
 
 
 
 
 
 
 
 
 
 
 
49
  input_text = gr.Textbox(
50
  value=examples[0][0], label="Text input", placeholder="Enter your text here"
51
  )