call-sentiment / app.py
ktangri
Adding speaker segmentation
c150302
raw
history blame
1.75 kB
import gradio as gr
from transformers import pipeline, Wav2Vec2ProcessorWithLM
from pyannote.audio import Pipeline
from librosa import load, resample
from rpunct import RestorePuncts
asr_model = 'patrickvonplaten/wav2vec2-base-100h-with-lm'
processor = Wav2Vec2ProcessorWithLM.from_pretrained(asr_model)
asr = pipeline('automatic-speech-recognition', model=asr_model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, decoder=processor.decoder)
speaker_segmentation = Pipeline.from_pretrained("pyannote/speaker-segmentation")
rpunct = RestorePuncts()
def transcribe(filepath):
speech, sampling_rate = load(filepath)
if sampling_rate != 16000:
speech = resample(speech, sampling_rate, 16000)
speaker_output = speaker_segmentation(speech)
text = asr(speech, return_timestamps="word")
full_text = text['text'].lower()
chunks = text['chunks']
diarizaed_output = ""
i = 0
for turn, _, speaker in speaker_output.itertracks(yield_label=True):
diarized = ""
while i < len(chunks) and chunks[i]['timestamp'][1] <= turn.end:
diarized += chunks[i]['text'].lower() + ' '
i += 1
if diarized != "":
diarized = rpunct.punctuate(diarized)
diarized_output += "{}: ''{}'' from {:.3f}-{:.3f}\n".format(speaker,diarized,turn.start,turn.end)
return diarizaed_output, full_text
mic = gr.inputs.Audio(source='microphone', type='filepath', label='Speech input', optional=False)
diarized_transcript = gr.outputs.Textbox(type='auto', label='Diarized Output')
full_transcript = gr.outputs.Textbox(type='auto', label='Full Transcript')
iface = gr.Interface(
theme='huggingface',
description='Testing transcription',
fn=transcribe,
inputs=[mic],
outputs=[diarized_transcript, full_transcript]
)
iface.launch()