ksort commited on
Commit
4e4bd20
Β·
1 Parent(s): d1456dd

Update default markdown

Browse files
Files changed (1) hide show
  1. app.py +18 -0
app.py CHANGED
@@ -8,12 +8,30 @@ from pathlib import Path
8
  from serve.constants import SERVER_PORT, ROOT_PATH, ELO_RESULTS_DIR
9
 
10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  def build_combine_demo(models, elo_results_file, leaderboard_table_file):
12
  with gr.Blocks(
13
  title="Play with Open Vision Models",
14
  theme=gr.themes.Default(),
15
  css=block_css,
16
  ) as demo:
 
 
 
 
 
17
  with gr.Tabs() as tabs_combine:
18
  with gr.Tab("Image Generation", id=0):
19
  with gr.Tabs() as tabs_ig:
 
8
  from serve.constants import SERVER_PORT, ROOT_PATH, ELO_RESULTS_DIR
9
 
10
 
11
+ def make_default_md():
12
+ link_color = "#1976D2" # This color should be clear in both light and dark mode
13
+ leaderboard_md = f"""
14
+ # πŸ… K-Sort Arena: Efficient and Reliable Benchmarking for Generative Models via K-wise Human Preferences
15
+ ### [Paper](https://arxiv.org/abs/2408.14468) | [Twitter](https://x.com/_akhaliq/status/1828280979242320014)
16
+ - ⚑ For vision tasks, K-wise comparisons can provide much richer info but only take similar time as pairwise comparisons.
17
+ - 🎯 Well designed matchmaking algorithm can further save human efforts than random match pairing in normal Arena.
18
+ - πŸ“ˆ Probabilistic modeling can obtain a faster and more stable convergence than Elo scoring system.
19
+ """
20
+
21
+ return leaderboard_md
22
+
23
+
24
  def build_combine_demo(models, elo_results_file, leaderboard_table_file):
25
  with gr.Blocks(
26
  title="Play with Open Vision Models",
27
  theme=gr.themes.Default(),
28
  css=block_css,
29
  ) as demo:
30
+
31
+ with gr.Blocks():
32
+ md = make_default_md()
33
+ md_default = gr.Markdown(md, elem_id="default_leaderboard_markdown")
34
+
35
  with gr.Tabs() as tabs_combine:
36
  with gr.Tab("Image Generation", id=0):
37
  with gr.Tabs() as tabs_ig: