Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,187 Bytes
3427608 b257e01 3427608 0e99a0b 02f8ed6 3427608 02f8ed6 3427608 02f8ed6 745f608 3427608 745f608 a4b32da 745f608 533658a 745f608 a4b32da 745f608 a4b32da 3427608 a4b32da 3427608 a4b32da 3427608 a4b32da 3427608 a4b32da 3427608 02f8ed6 745f608 3427608 02f8ed6 3427608 a4b32da 3427608 02f8ed6 745f608 02f8ed6 3427608 afa1318 805ccc4 e1665ec 3427608 21d48a0 3427608 b177a48 b0a5421 b177a48 3427608 afa1318 b0a5421 afa1318 3427608 afa1318 3427608 a4b32da 805ccc4 3427608 b257e01 3427608 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
import numpy as np
import json
from trueskill import TrueSkill
import paramiko
import io, os
import sys
import random
sys.path.append('../')
from serve.constants import SSH_SERVER, SSH_PORT, SSH_USER, SSH_PASSWORD, SSH_SKILL
trueskill_env = TrueSkill()
ssh_matchmaker_client = None
sftp_matchmaker_client = None
def create_ssh_matchmaker_client(server, port, user, password):
global ssh_matchmaker_client, sftp_matchmaker_client
ssh_matchmaker_client = paramiko.SSHClient()
ssh_matchmaker_client.load_system_host_keys()
ssh_matchmaker_client.set_missing_host_key_policy(paramiko.AutoAddPolicy())
ssh_matchmaker_client.connect(server, port, user, password)
transport = ssh_matchmaker_client.get_transport()
transport.set_keepalive(60)
sftp_matchmaker_client = ssh_matchmaker_client.open_sftp()
def is_connected():
global ssh_matchmaker_client, sftp_matchmaker_client
if ssh_matchmaker_client is None or sftp_matchmaker_client is None:
return False
if not ssh_matchmaker_client.get_transport().is_active():
return False
try:
sftp_matchmaker_client.listdir('.')
except Exception as e:
print(f"Error checking SFTP connection: {e}")
return False
return True
def ucb_score(trueskill_diff, t, n):
exploration_term = np.sqrt((2 * np.log(t + 1e-5)) / (n + 1e-5))
ucb = -trueskill_diff + 1.0 * exploration_term
return ucb
def update_trueskill(ratings, ranks):
new_ratings = trueskill_env.rate(ratings, ranks)
return new_ratings
def serialize_rating(rating):
return {'mu': rating.mu, 'sigma': rating.sigma}
def deserialize_rating(rating_dict):
return trueskill_env.Rating(mu=rating_dict['mu'], sigma=rating_dict['sigma'])
def save_json_via_sftp(ratings, comparison_counts, total_comparisons):
global sftp_matchmaker_client
if not is_connected():
create_ssh_matchmaker_client(SSH_SERVER, SSH_PORT, SSH_USER, SSH_PASSWORD)
data = {
'ratings': [serialize_rating(r) for r in ratings],
'comparison_counts': comparison_counts.tolist(),
'total_comparisons': total_comparisons
}
json_data = json.dumps(data)
with sftp_matchmaker_client.open(SSH_SKILL, 'w') as f:
f.write(json_data)
def load_json_via_sftp():
global sftp_matchmaker_client
if not is_connected():
create_ssh_matchmaker_client(SSH_SERVER, SSH_PORT, SSH_USER, SSH_PASSWORD)
with sftp_matchmaker_client.open(SSH_SKILL, 'r') as f:
data = json.load(f)
ratings = [deserialize_rating(r) for r in data['ratings']]
comparison_counts = np.array(data['comparison_counts'])
total_comparisons = data['total_comparisons']
return ratings, comparison_counts, total_comparisons
class RunningPivot(object):
running_pivot = []
def matchmaker(num_players, k_group=4, not_run=[]):
trueskill_env = TrueSkill()
ratings, comparison_counts, total_comparisons = load_json_via_sftp()
ratings = ratings[:num_players]
comparison_counts = comparison_counts[:num_players, :num_players]
# Randomly select a player
# selected_player = np.random.randint(0, num_players)
comparison_counts[RunningPivot.running_pivot, :] = float('inf')
comparison_counts[not_run, :] = float('inf')
selected_player = np.argmin(comparison_counts.sum(axis=1))
RunningPivot.running_pivot.append(selected_player)
RunningPivot.running_pivot = RunningPivot.running_pivot[-5:]
print(RunningPivot.running_pivot)
selected_trueskill_score = trueskill_env.expose(ratings[selected_player])
trueskill_scores = np.array([trueskill_env.expose(p) for p in ratings])
trueskill_diff = np.abs(trueskill_scores - selected_trueskill_score)
n = comparison_counts[selected_player]
ucb_scores = ucb_score(trueskill_diff, total_comparisons, n)
# Exclude self, select opponent with highest UCB score
ucb_scores[selected_player] = -float('inf')
ucb_scores[not_run] = -float('inf')
opponents = np.argsort(ucb_scores)[-k_group + 1:].tolist()
# Group players
model_ids = [selected_player] + opponents
random.shuffle(model_ids)
return model_ids
|