krishnasai99 commited on
Commit
27999b6
·
1 Parent(s): 49d2a49

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +58 -7
app.py CHANGED
@@ -5,11 +5,22 @@ from transformers import HubertForCTC, Wav2Vec2Processor , pipeline , Wav2Vec2Fo
5
  import torch
6
  import spacy
7
  from spacy import displacy
 
 
 
 
 
 
 
 
8
 
9
  st.title('Audio-to-Text')
10
 
11
  audio_file = st.file_uploader('Upload Audio' , type=['wav' , 'mp3','m4a'])
12
 
 
 
 
13
  if st.button('Trascribe Audio'):
14
  if audio_file is not None:
15
  processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
@@ -19,7 +30,9 @@ if st.button('Trascribe Audio'):
19
  logits = model(input_values).logits
20
  predicted_ids = torch.argmax(logits, dim=-1)
21
  text = processor.batch_decode(predicted_ids)
22
- st.write(text)
 
 
23
  else:
24
  st.error('please upload the audio file')
25
 
@@ -33,8 +46,10 @@ if st.button('Summarize'):
33
  logits = model(input_values).logits
34
  predicted_ids = torch.argmax(logits, dim=-1)
35
  text = processor.batch_decode(predicted_ids)
 
 
36
  summarize = pipeline("summarization")
37
- st.write(summarize(text))
38
 
39
  if st.button('sentiment-analysis'):
40
  processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
@@ -44,8 +59,10 @@ if st.button('sentiment-analysis'):
44
  logits = model(input_values).logits
45
  predicted_ids = torch.argmax(logits, dim=-1)
46
  text = processor.batch_decode(predicted_ids)
 
 
47
  nlp_sa = pipeline("sentiment-analysis")
48
- st.write(nlp_sa(text))
49
 
50
  if st.button('Name'):
51
  processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
@@ -55,7 +72,41 @@ if st.button('Name'):
55
  logits = model(input_values).logits
56
  predicted_ids = torch.argmax(logits, dim=-1)
57
  text = processor.batch_decode(predicted_ids)
58
- str = ''.join(text)
59
- trf = spacy.load('en_core_web_sm')
60
- doc=trf(str)
61
- print(displacy.render(doc,style='ent'))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  import torch
6
  import spacy
7
  from spacy import displacy
8
+ import en_core_web_sm
9
+ import spacy.cli
10
+ from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
11
+ import nltk
12
+ from nltk import tokenize
13
+ nltk.download('punkt')
14
+ import spacy_streamlit
15
+
16
 
17
  st.title('Audio-to-Text')
18
 
19
  audio_file = st.file_uploader('Upload Audio' , type=['wav' , 'mp3','m4a'])
20
 
21
+ st.title( 'Please select any of the NLP tasks')
22
+
23
+
24
  if st.button('Trascribe Audio'):
25
  if audio_file is not None:
26
  processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
 
30
  logits = model(input_values).logits
31
  predicted_ids = torch.argmax(logits, dim=-1)
32
  text = processor.batch_decode(predicted_ids)
33
+ summary_list = [str(sentence) for sentence in text]
34
+ result = ' '.join(summary_list)
35
+ st.markdown(result)
36
  else:
37
  st.error('please upload the audio file')
38
 
 
46
  logits = model(input_values).logits
47
  predicted_ids = torch.argmax(logits, dim=-1)
48
  text = processor.batch_decode(predicted_ids)
49
+ summary_list = [str(sentence) for sentence in text]
50
+ result = ' '.join(summary_list)
51
  summarize = pipeline("summarization")
52
+ st.markdown(summarize(result)[0]['summary_text'])
53
 
54
  if st.button('sentiment-analysis'):
55
  processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
 
59
  logits = model(input_values).logits
60
  predicted_ids = torch.argmax(logits, dim=-1)
61
  text = processor.batch_decode(predicted_ids)
62
+ summary_list = [str(sentence) for sentence in text]
63
+ result = ' '.join(summary_list)
64
  nlp_sa = pipeline("sentiment-analysis")
65
+ st.markdown(nlp_sa(result))
66
 
67
  if st.button('Name'):
68
  processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
 
72
  logits = model(input_values).logits
73
  predicted_ids = torch.argmax(logits, dim=-1)
74
  text = processor.batch_decode(predicted_ids)
75
+ summary_list = [str(sentence) for sentence in text]
76
+ result = ' '.join(summary_list)
77
+ nlp = spacy.load('en_core_web_sm')
78
+ doc=nlp(result)
79
+ spacy_streamlit.visualize_ner(doc, labels=nlp.get_pipe("ner").labels, title= "List of Entities")
80
+
81
+
82
+ tokenizer = AutoTokenizer.from_pretrained("t5-base")
83
+
84
+ @st.cache(allow_output_mutation=True)
85
+ def load_model():
86
+ model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")
87
+ return model
88
+
89
+ model1 = load_model()
90
+
91
+ st.subheader('Select your source and target language below.')
92
+ source_lang = st.selectbox("Source language",['English'])
93
+ target_lang = st.selectbox("Target language",['German','French'])
94
+
95
+
96
+ if st.button('Translate'):
97
+ processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
98
+ model = HubertForCTC.from_pretrained("facebook/hubert-large-ls960-ft")
99
+ speech, rate = librosa.load(audio_file, sr=16000)
100
+ input_values = processor(speech, return_tensors="pt", padding="longest", sampling_rate=rate).input_values
101
+ logits = model(input_values).logits
102
+ predicted_ids = torch.argmax(logits, dim=-1)
103
+ text = processor.batch_decode(predicted_ids)
104
+ summary_list = [str(sentence) for sentence in text]
105
+ result = ' '.join(summary_list)
106
+ prefix = 'translate '+str(source_lang)+' to '+str(target_lang)
107
+ sentence_token = tokenize.sent_tokenize(result)
108
+ output = tokenizer([prefix+sentence for sentence in sentence_token], padding=True, return_tensors="pt")
109
+ translated_id = model1.generate(output["input_ids"], attention_mask=output['attention_mask'], max_length=100)
110
+ translated_word = tokenizer.batch_decode(translated_id, skip_special_tokens=True)
111
+ st.subheader('Translated Text')
112
+ st.write(' '.join(translated_word))