import os from math import floor from typing import Optional import spaces import torch import gradio as gr from transformers import pipeline from transformers.pipelines.audio_utils import ffmpeg_read # config model_name = "kotoba-tech/kotoba-whisper-v2.2" example_file = "sample_diarization_japanese.mp3" # device setting if torch.cuda.is_available(): torch_dtype = torch.bfloat16 device = "cuda" model_kwargs = {'attn_implementation': 'sdpa'} else: torch_dtype = torch.float32 device = "cpu" model_kwargs = {} # define the pipeline pipe = pipeline( model=model_name, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device, model_kwargs=model_kwargs, trust_remote_code=True ) sampling_rate = pipe.feature_extractor.sampling_rate def format_time(start: Optional[float], end: Optional[float]): def _format_time(seconds: Optional[float]): if seconds is None: return "[no timestamp available]" minutes = floor(seconds / 60) hours = floor(seconds / 3600) seconds = seconds - hours * 3600 - minutes * 60 m_seconds = floor(round(seconds - floor(seconds), 1) * 10) seconds = floor(seconds) return f'{minutes:02}:{seconds:02}.{m_seconds:01}' return f"[{_format_time(start)} -> {_format_time(end)}]:" @spaces.GPU def get_prediction(inputs): return pipe(inputs, generate_kwargs={"language": "ja", "task": "transcribe"}) def transcribe(inputs: str): if inputs is None: raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") with open(inputs, "rb") as f: inputs = f.read() prediction = get_prediction({"array": ffmpeg_read(inputs, sampling_rate), "sampling_rate": sampling_rate}) output = "" for n, s in enumerate(prediction["speakers"]): text_timestamped = "\n".join([f"- **{format_time(*c['timestamp'])}** {c['text']}" for c in prediction[f"chunks/{s}"]]) output += f'### Speaker {n+1} \n{text_timestamped}\n' return output description = (f"Transcribe and diarize long-form microphone or audio inputs with the click of a button! Demo uses " f"Kotoba-Whisper [{model_name}](https://huggingface.co/{model_name}).") title = f"Audio Transcription and Diarization with {os.path.basename(model_name)}" shared_config = {"fn": transcribe, "title": title, "description": description, "allow_flagging": "never", "examples": [example_file]} o_upload = gr.Markdown() o_mic = gr.Markdown() i_upload = gr.Interface( inputs=[gr.Audio(sources="upload", type="filepath", label="Audio file")], outputs=gr.Markdown(), **shared_config ) i_mic = gr.Interface( inputs=[gr.Audio(sources="microphone", type="filepath", label="Microphone input")], outputs=gr.Markdown(), **shared_config ) with gr.Blocks() as demo: gr.TabbedInterface([i_upload, i_mic], ["Audio file", "Microphone"]) demo.queue(api_open=False, default_concurrency_limit=40).launch(show_api=False, show_error=True)