helloworld53 commited on
Commit
f1220a5
·
1 Parent(s): 40335fb

New streamlit committed

Browse files
Files changed (3) hide show
  1. .requirements.txt.swp +0 -0
  2. app.py +62 -2
  3. requirements.txt +4 -0
.requirements.txt.swp ADDED
Binary file (12.3 kB). View file
 
app.py CHANGED
@@ -1,4 +1,64 @@
1
  import streamlit as st
 
 
 
 
 
 
 
 
 
 
2
 
3
- x = st.slider('Select a value')
4
- st.write(x, 'squared is', x * x)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
2
+ from langchain.callbacks.manager import CallbackManager
3
+ from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
4
+ from langchain.chains import LLMChain
5
+ from langchain.prompts import PromptTemplate
6
+ from langchain_community.llms import LlamaCpp
7
+ from llama_cpp import Llama
8
+ from pinecone import Pinecone
9
+ from huggingface_hub import hf_hub_download
10
+ @st.cache_resource()
11
+ def load_model():
12
 
13
+ # from google.colab import userdata
14
+ model_name_or_path = "CompendiumLabs/bge-large-en-v1.5-gguf"
15
+ model_basename = 'bge-large-en-v1.5-f32.gguf'
16
+ model_path = hf_hub_download(
17
+ repo_id=model_name_or_path,
18
+ filename=model_basename,
19
+ cache_dir= '/content/models' # Directory for the model
20
+ )
21
+ model = Llama(model_path, embedding=True)
22
+
23
+ st.success("Loaded NLP model from Hugging Face!") # 👈 Show a success message
24
+
25
+
26
+ # pc = Pinecone(api_key=api_key)
27
+ # index = pc.Index("law")
28
+ # model_2_name = "TheBloke/zephyr-7B-beta-GGUF"
29
+ # model_2base_name = "zephyr-7b-beta.Q4_K_M.gguf"
30
+ # model_path_model = hf_hub_download(
31
+ # repo_id=model_2_name,
32
+ # filename=model_2base_name,
33
+ # cache_dir= '/content/models' # Directory for the model
34
+ # )
35
+ # prompt_template = "<|system|>\
36
+ # </s>\
37
+ # <|user|>\
38
+ # {prompt}</s>\
39
+ # <|assistant|>"
40
+ # template = prompt_template
41
+ # prompt = PromptTemplate.from_template(template)
42
+ # callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
43
+ # llm = LlamaCpp(
44
+ # model_path=model_path_model,
45
+ # temperature=0.75,
46
+ # max_tokens=2500,
47
+ # top_p=1,
48
+ # callback_manager=callback_manager,
49
+ # verbose=True,
50
+ # n_ctx=2048,
51
+ # n_threads = 2# Verbose is required to pass to the callback manager
52
+ # )
53
+ return model
54
+
55
+ st.title("Please ask your question on Lithuanian rules for foreigners.")
56
+ a = load_model()
57
+ question = st.text_input("Enter your question:")
58
+ # if question:
59
+ # # Perform Question Answering
60
+ # answer = qa_chain(context=context, question=question)
61
+
62
+ # # Display the answer
63
+ # st.header("Answer:")
64
+ # st.write(answer)
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ huggingface-hub
2
+ pinecone-client
3
+ llama-cpp-python -C cmake.args="-DLLAMA_BLAS=ON;-DLLAMA_BLAS_VENDOR=OpenBLAS"
4
+ langchain