Spaces:
Runtime error
Runtime error
Kiril
commited on
Commit
·
0b3043b
1
Parent(s):
435b3cb
RAG with feedback
Browse files- .gitignore +2 -0
- app.py +186 -0
- data/.gitkeep +0 -0
- feedback.py +67 -0
- rag_bot.py +92 -0
- requirements.txt +18 -0
.gitignore
CHANGED
@@ -1,3 +1,5 @@
|
|
|
|
|
|
1 |
# Byte-compiled / optimized / DLL files
|
2 |
__pycache__/
|
3 |
*.py[cod]
|
|
|
1 |
+
data/
|
2 |
+
|
3 |
# Byte-compiled / optimized / DLL files
|
4 |
__pycache__/
|
5 |
*.py[cod]
|
app.py
ADDED
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from pathlib import Path
|
3 |
+
from typing import List
|
4 |
+
|
5 |
+
import chainlit as cl
|
6 |
+
import chainlit.data as cl_data
|
7 |
+
from langchain.callbacks.base import BaseCallbackHandler
|
8 |
+
from langchain.indexes import SQLRecordManager, index
|
9 |
+
from langchain.prompts import ChatPromptTemplate
|
10 |
+
from langchain.schema import Document
|
11 |
+
from langchain.schema import StrOutputParser
|
12 |
+
from langchain.schema.runnable import Runnable, RunnablePassthrough, RunnableConfig
|
13 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
14 |
+
from langchain_community.document_loaders import (
|
15 |
+
PyPDFDirectoryLoader,
|
16 |
+
)
|
17 |
+
from langchain_community.vectorstores import Chroma
|
18 |
+
# from langchain_openai import ChatOpenAI, OpenAIEmbeddings
|
19 |
+
from langchain_groq import ChatGroq
|
20 |
+
from langchain_huggingface import HuggingFaceEndpointEmbeddings
|
21 |
+
|
22 |
+
from feedback import CustomDataLayer
|
23 |
+
from rag_bot import RagBot
|
24 |
+
|
25 |
+
chunk_size = 1024
|
26 |
+
chunk_overlap = 50
|
27 |
+
|
28 |
+
embeddings_model = HuggingFaceEndpointEmbeddings(
|
29 |
+
huggingfacehub_api_token=os.getenv("HUGGINGFACEHUB_API_TOKEN"),
|
30 |
+
model="sentence-transformers/all-MiniLM-L12-v2",
|
31 |
+
)
|
32 |
+
|
33 |
+
|
34 |
+
# Feedback
|
35 |
+
cl_data._data_layer = CustomDataLayer()
|
36 |
+
|
37 |
+
PDF_STORAGE_PATH = "./data"
|
38 |
+
|
39 |
+
|
40 |
+
def process_pdfs(pdf_storage_path: str):
|
41 |
+
pdf_directory = Path(pdf_storage_path)
|
42 |
+
docs = [] # type: List[Document]
|
43 |
+
# text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
44 |
+
|
45 |
+
loader = PyPDFDirectoryLoader(pdf_directory)
|
46 |
+
documents = loader.load()
|
47 |
+
recursive_text_splitter = RecursiveCharacterTextSplitter(
|
48 |
+
chunk_size=chunk_size,
|
49 |
+
chunk_overlap=chunk_overlap,
|
50 |
+
length_function=len,
|
51 |
+
is_separator_regex=False,
|
52 |
+
)
|
53 |
+
docs = recursive_text_splitter.split_documents(documents)
|
54 |
+
|
55 |
+
doc_search = Chroma.from_documents(docs, embeddings_model)
|
56 |
+
|
57 |
+
namespace = "chromadb/my_documents"
|
58 |
+
record_manager = SQLRecordManager(
|
59 |
+
namespace, db_url="sqlite:///record_manager_cache.sql"
|
60 |
+
)
|
61 |
+
record_manager.create_schema()
|
62 |
+
|
63 |
+
index_result = index(
|
64 |
+
docs,
|
65 |
+
record_manager,
|
66 |
+
doc_search,
|
67 |
+
cleanup="full",
|
68 |
+
source_id_key="source",
|
69 |
+
)
|
70 |
+
|
71 |
+
print(f"Indexing stats: {index_result}")
|
72 |
+
|
73 |
+
return doc_search
|
74 |
+
|
75 |
+
|
76 |
+
doc_search = process_pdfs(PDF_STORAGE_PATH)
|
77 |
+
# model = ChatOpenAI(model_name="gpt-4", streaming=True)
|
78 |
+
model = ChatGroq(
|
79 |
+
model='llama-3.1-70b-versatile',
|
80 |
+
temperature=0,
|
81 |
+
max_tokens=1024,
|
82 |
+
timeout=None,
|
83 |
+
max_retries=5,
|
84 |
+
api_key=os.getenv("GROQ_API_KEY"),
|
85 |
+
# other params...
|
86 |
+
)
|
87 |
+
|
88 |
+
|
89 |
+
@cl.on_chat_start
|
90 |
+
async def on_chat_start():
|
91 |
+
|
92 |
+
prompt = ChatPromptTemplate.from_messages(
|
93 |
+
[
|
94 |
+
("system",
|
95 |
+
"""You are a helpful assistant that can answer questions about technical documents in any language.
|
96 |
+
Keep your answers only in the language of the question(s).
|
97 |
+
|
98 |
+
Only use the factual information from the document(s) to answer the question(s). Keep your answers concise and to the point.
|
99 |
+
|
100 |
+
If you do not have have sufficient information to answer a question, politely refuse to answer and say "I don't know".
|
101 |
+
\n\nRelevant documents will be retrieved below."""
|
102 |
+
"Context: {context}"
|
103 |
+
),
|
104 |
+
("human", "{question}"),
|
105 |
+
]
|
106 |
+
)
|
107 |
+
|
108 |
+
def format_docs(docs):
|
109 |
+
return "\n\n".join([d.page_content for d in docs])
|
110 |
+
|
111 |
+
retriever = doc_search.as_retriever(search_kwargs={"k": 5})
|
112 |
+
|
113 |
+
runnable = (
|
114 |
+
{"context": retriever | format_docs, "question": RunnablePassthrough()}
|
115 |
+
| prompt
|
116 |
+
| model
|
117 |
+
| StrOutputParser()
|
118 |
+
)
|
119 |
+
|
120 |
+
cl.user_session.set("runnable", runnable)
|
121 |
+
|
122 |
+
|
123 |
+
@cl.on_message
|
124 |
+
async def on_message(message: cl.Message):
|
125 |
+
runnable = cl.user_session.get("runnable") # type: Runnable
|
126 |
+
msg = cl.Message(content="")
|
127 |
+
|
128 |
+
class PostMessageHandler(BaseCallbackHandler):
|
129 |
+
"""
|
130 |
+
Callback handler for handling the retriever and LLM processes.
|
131 |
+
Used to post the sources of the retrieved documents as a Chainlit element.
|
132 |
+
"""
|
133 |
+
|
134 |
+
def __init__(self, msg: cl.Message):
|
135 |
+
BaseCallbackHandler.__init__(self)
|
136 |
+
self.msg = msg
|
137 |
+
self.sources = [] # To store unique pairs
|
138 |
+
|
139 |
+
def on_retriever_end(self, documents, *, run_id, parent_run_id, **kwargs):
|
140 |
+
for doc in documents:
|
141 |
+
source = doc.metadata.get('source', 'Unknown Source')
|
142 |
+
page = doc.metadata.get('page', 'N/A')
|
143 |
+
page_content = doc.page_content
|
144 |
+
# self.sources.add(source_page_pair) # Add unique pairs to the set
|
145 |
+
if not any(s["source"] == source and s["page"] == page for s in self.sources):
|
146 |
+
self.sources.append({
|
147 |
+
"source": source,
|
148 |
+
"page": page,
|
149 |
+
"content": page_content
|
150 |
+
})
|
151 |
+
|
152 |
+
def on_llm_end(self, response, *, run_id, parent_run_id, **kwargs):
|
153 |
+
if len(self.sources):
|
154 |
+
# Create a list of clickable elements for sources
|
155 |
+
text_elements = []
|
156 |
+
source_references = []
|
157 |
+
for idx, src in enumerate(self.sources):
|
158 |
+
source_name = f"{src['source']} p.{src['page']}"
|
159 |
+
source_references.append(source_name)
|
160 |
+
|
161 |
+
# Add a previewable Chainlit element
|
162 |
+
text_elements.append(
|
163 |
+
cl.Text(
|
164 |
+
name=source_name,
|
165 |
+
content=src["content"],
|
166 |
+
display="side",
|
167 |
+
)
|
168 |
+
)
|
169 |
+
# Generate the answer with clickable source names
|
170 |
+
self.msg.content += f"\n\nSources: {", ".join(
|
171 |
+
source_references
|
172 |
+
)}"
|
173 |
+
|
174 |
+
# Append text elements to the message
|
175 |
+
self.msg.elements.extend(text_elements)
|
176 |
+
|
177 |
+
async for chunk in runnable.astream(
|
178 |
+
message.content,
|
179 |
+
config=RunnableConfig(callbacks=[
|
180 |
+
cl.LangchainCallbackHandler(),
|
181 |
+
PostMessageHandler(msg)
|
182 |
+
]),
|
183 |
+
):
|
184 |
+
await msg.stream_token(chunk)
|
185 |
+
|
186 |
+
await msg.send()
|
data/.gitkeep
ADDED
File without changes
|
feedback.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import chainlit.data as cl_data
|
2 |
+
import chainlit as cl
|
3 |
+
from langsmith import traceable, Client
|
4 |
+
import uuid
|
5 |
+
|
6 |
+
|
7 |
+
class CustomDataLayer(cl_data.BaseDataLayer):
|
8 |
+
async def upsert_feedback(self, feedback: cl_data.base.Feedback) -> str:
|
9 |
+
client = Client()
|
10 |
+
run_id = uuid.uuid4()
|
11 |
+
cl.message(f"Creating feedback for run_id: {run_id} \n{feedback}")
|
12 |
+
|
13 |
+
client.create_feedback(
|
14 |
+
run_id,
|
15 |
+
key="correction",
|
16 |
+
score=feedback.value,
|
17 |
+
comment=feedback.comment,
|
18 |
+
)
|
19 |
+
|
20 |
+
|
21 |
+
return await super().upsert_feedback(feedback)
|
22 |
+
|
23 |
+
async def build_debug_url(self, *args, **kwargs):
|
24 |
+
pass
|
25 |
+
|
26 |
+
async def create_element(self, *args, **kwargs):
|
27 |
+
pass
|
28 |
+
|
29 |
+
async def create_step(self, *args, **kwargs):
|
30 |
+
pass
|
31 |
+
|
32 |
+
async def create_user(self, *args, **kwargs):
|
33 |
+
pass
|
34 |
+
|
35 |
+
async def delete_element(self, *args, **kwargs):
|
36 |
+
pass
|
37 |
+
|
38 |
+
async def delete_feedback(self, *args, **kwargs):
|
39 |
+
pass
|
40 |
+
|
41 |
+
async def delete_step(self, *args, **kwargs):
|
42 |
+
pass
|
43 |
+
|
44 |
+
async def delete_thread(self, *args, **kwargs):
|
45 |
+
pass
|
46 |
+
|
47 |
+
async def get_element(self, *args, **kwargs):
|
48 |
+
pass
|
49 |
+
|
50 |
+
async def get_thread(self, *args, **kwargs):
|
51 |
+
pass
|
52 |
+
|
53 |
+
async def get_thread_author(self, *args, **kwargs):
|
54 |
+
pass
|
55 |
+
|
56 |
+
async def get_user(self, *args, **kwargs):
|
57 |
+
pass
|
58 |
+
|
59 |
+
async def list_threads(self, *args, **kwargs):
|
60 |
+
pass
|
61 |
+
|
62 |
+
async def update_step(self, *args, **kwargs):
|
63 |
+
pass
|
64 |
+
|
65 |
+
async def update_thread(self, *args, **kwargs):
|
66 |
+
pass
|
67 |
+
|
rag_bot.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
from operator import itemgetter
|
3 |
+
from typing import List
|
4 |
+
|
5 |
+
from langchain.retrievers import EnsembleRetriever
|
6 |
+
from langchain_community.retrievers import BM25Retriever
|
7 |
+
from langchain_core.documents import Document
|
8 |
+
from langchain_core.output_parsers import StrOutputParser
|
9 |
+
from langchain_core.prompts import ChatPromptTemplate
|
10 |
+
from langchain_core.runnables import chain
|
11 |
+
from langsmith import traceable
|
12 |
+
from nltk.tokenize import word_tokenize
|
13 |
+
|
14 |
+
|
15 |
+
class RagBot:
|
16 |
+
|
17 |
+
def __init__(self, retriever, model, is_local_model):
|
18 |
+
self._retriever = retriever
|
19 |
+
# Wrapping the client instruments the LLM
|
20 |
+
self._model = model
|
21 |
+
self._is_local_model = is_local_model
|
22 |
+
self._prompt = self.prompt_template()
|
23 |
+
|
24 |
+
# Set up the prompt template
|
25 |
+
def prompt_template(self):
|
26 |
+
return ChatPromptTemplate.from_messages(
|
27 |
+
[
|
28 |
+
("system",
|
29 |
+
"""You are a helpful assistant that can answer questions about technical documents in any language.
|
30 |
+
Keep your answers only in the language of the question(s).
|
31 |
+
|
32 |
+
Only use the factual information from the document(s) to answer the question(s). Keep your answers concise and to the point.
|
33 |
+
|
34 |
+
If you do not have have sufficient information to answer a question, politely refuse to answer and say "I don't know".
|
35 |
+
\n\nRelevant documents will be retrieved below."""
|
36 |
+
"Context: {context}"
|
37 |
+
),
|
38 |
+
("human", "{question}"),
|
39 |
+
])
|
40 |
+
|
41 |
+
@traceable()
|
42 |
+
def retrieve_docs(self, question):
|
43 |
+
return self._retriever.invoke(question)
|
44 |
+
|
45 |
+
@traceable()
|
46 |
+
def invoke_llm(self, query, docs):
|
47 |
+
chain = (
|
48 |
+
# {"docs": retriever,"question": RunnablePassthrough()}
|
49 |
+
{"context": itemgetter("context"), "question": itemgetter("question")}
|
50 |
+
| self._prompt | self._model | StrOutputParser()
|
51 |
+
)
|
52 |
+
|
53 |
+
# Visualize input schema if needed
|
54 |
+
# chain.input_schema.schema()
|
55 |
+
# Retrieve context docs
|
56 |
+
# context = retriever.invoke(query)
|
57 |
+
|
58 |
+
print(f"Question : \n{query}\n\n")
|
59 |
+
# Stream the result if HuggingFaceEndpoint is used
|
60 |
+
result = ""
|
61 |
+
stopwatch = time.perf_counter() # measure time
|
62 |
+
if not self._is_local_model:
|
63 |
+
print(f"Invoking the result with Inference API...\n")
|
64 |
+
chunks = []
|
65 |
+
result = chain.invoke({"question": query, "context": docs})
|
66 |
+
print(result)
|
67 |
+
# for chunk in chain.stream({"context": context, "question": query}):
|
68 |
+
# result+=chunk
|
69 |
+
# print(chunk, end='|', flush=True)
|
70 |
+
|
71 |
+
else:
|
72 |
+
print(f"Invoking the result with Local LLM...\n")
|
73 |
+
result = chain.invoke({"context": docs, "question": query})
|
74 |
+
# result.append(chunk)
|
75 |
+
# print(chunk, end='|', flush=True)
|
76 |
+
print(f"\n\nTime for invoke {(time.perf_counter() - stopwatch) / 60}")
|
77 |
+
print(f"\nThe answer is based on the following {self._retriever.k} relevant documents:")
|
78 |
+
# context = result.get("context", []) # Retrieve the context
|
79 |
+
for doc in docs:
|
80 |
+
print(f"\n{doc.page_content}\nMetadata: {doc.metadata}\n")
|
81 |
+
|
82 |
+
# Evaluators will expect "answer" and "contexts"
|
83 |
+
return {
|
84 |
+
"answer": result,
|
85 |
+
"contexts": docs,
|
86 |
+
}
|
87 |
+
|
88 |
+
@traceable()
|
89 |
+
def get_answer(self, query: str):
|
90 |
+
docs = self.retrieve_docs(query)
|
91 |
+
return self.invoke_llm(query, docs)
|
92 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Chainlit
|
2 |
+
chainlit
|
3 |
+
pydantic==2.10.1 # Required for chainlit
|
4 |
+
# Langchain
|
5 |
+
langchain
|
6 |
+
langchain-core
|
7 |
+
langchain-community
|
8 |
+
langchain-groq
|
9 |
+
langchain-huggingface
|
10 |
+
langsmith
|
11 |
+
|
12 |
+
chromadb
|
13 |
+
tiktoken
|
14 |
+
pypdf
|
15 |
+
cryptography # required for pypdf
|
16 |
+
# BM25 retriever
|
17 |
+
nltk
|
18 |
+
|