Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,138 Bytes
f04732f a3db70a c36d5bb 92e7e3a a3db70a f04732f 08bc998 a3db70a 88b9346 a3db70a 92e7e3a 175120e 92e7e3a 175120e c36d5bb a3db70a 92e7e3a a3db70a 92e7e3a a3db70a 4be8019 92e7e3a a3db70a 92e7e3a a3db70a d227c5a 9f876d1 a3db70a 3ed4913 6155e84 f60e84a 35869cc f60e84a 57a1e05 7eb2d5b e1b36d7 8707a8e 7f9c1e7 8707a8e 7f9c1e7 8707a8e 6155e84 73ec4ab 175120e 73ec4ab 175120e 73ec4ab d869a8b 73ec4ab 6e20834 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, StoppingCriteria
import gradio as gr
import spaces
import torch
import numpy as np
import torch
import torchvision.transforms as T
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer
from threading import Thread
import re
import time
from PIL import Image
import torch
import spaces
import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
torch.set_default_device('cuda')
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def load_image(image_file, input_size=448, max_num=12):
image = Image.open(image_file).convert('RGB')
transform = build_transform(input_size=input_size)
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values
model = AutoModel.from_pretrained(
"5CD-AI/Vintern-1B-v2",
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True,
).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained("5CD-AI/Vintern-1B-v2", trust_remote_code=True, use_fast=False)
@spaces.GPU
def chat(message, history):
print(history)
print(message)
if len(history) == 0 or len(message["files"]) != 0:
test_image = message["files"][0]["path"]
else:
test_image = history[0][0][0]
pixel_values = load_image(test_image, max_num=12).to(torch.bfloat16).cuda()
generation_config = dict(max_new_tokens= 1024, do_sample=True, num_beams = 3, repetition_penalty=2.5)
if len(history) == 0:
question = '<image>\n'+message["text"]
response, conv_history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
else:
conv_history = []
for chat_pair in history:
if chat_pair[1] is not None:
if len(conv_history) == 0 and len(message["files"]) == 0:
chat_pair[0] = '<image>\n' + chat_pair[0]
conv_history.append(tuple(chat_pair))
print(conv_history)
if len(message["files"]) != 0:
question = '<image>\n'+message["text"]
else:
question = message["text"]
response, conv_history = model.chat(tokenizer, pixel_values, question, generation_config, history=conv_history, return_history=True)
print(f'User: {question}\nAssistant: {response}')
buffer = ""
for new_text in response:
buffer += new_text
generated_text_without_prompt = buffer[:]
time.sleep(0.01)
yield generated_text_without_prompt
CSS ="""
# @media only screen and (max-width: 600px){
# #component-3 {
# height: 90dvh !important;
# transform-origin: top; /* Đảm bảo rằng phần tử mở rộng từ trên xuống */
# border-style: solid;
# overflow: hidden;
# flex-grow: 1;
# min-width: min(160px, 100%);
# border-width: var(--block-border-width);
# }
# }
#component-3 {
height: 50dvh !important;
transform-origin: top; /* Đảm bảo rằng phần tử mở rộng từ trên xuống */
border-style: solid;
overflow: hidden;
flex-grow: 1;
min-width: min(160px, 100%);
border-width: var(--block-border-width);
}
button.svelte-1lcyrx4 img.svelte-1pijsyv {
width: 100%;
object-fit: contain;
height: 100%;
}
/* Đặt chiều cao cho nút và cho phép chọn văn bản */
button.svelte-1lcyrx4 {
user-select: text;
text-align: left;
height: 300px;
}
"""
demo = gr.ChatInterface(
fn=chat,
description="""Try [Vintern-1B-v2](https://huggingface.co/5CD-AI/Viet-InternVL2-1B) in this demo. Vintern-1B-v2 consists of [InternViT-300M-448px](https://huggingface.co/OpenGVLab/InternViT-300M-448px), an MLP projector, and [Qwen2-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct).""",
examples=[{"text": "Mô tả hình ảnh.", "files":["./demo_3.jpg"]},
{"text": "Trích xuất các thông tin từ ảnh.", "files":["./demo_1.jpg"]},
{"text": "Mô tả hình ảnh một cách chi tiết.", "files":["./demo_2.jpg"]}],
title="❄️ Vintern-1B-v2 ❄️",
multimodal=True,
css=CSS
)
demo.queue().launch() |