import torch import torch.nn as nn import torch.nn.functional as F from xtuner.registry import BUILDER from xtuner.model.utils import LoadWoInit, guess_load_checkpoint from xtuner.model.llava import LLaVAModel from mmengine.model import BaseModel from mmengine import print_log from projects.glamm.utils import prepare_inputs_labels_for_multimodal from projects.glamm.utils import DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN class GLaMM(LLaVAModel): def __init__(self, use_activation_checkpointing=True, tokenizer=None, grounding_encoder=None, region_encoder=None, loss_mask=None, loss_dice=None, *args, **kwargs): super(GLaMM, self).__init__( *args, use_activation_checkpointing=use_activation_checkpointing, **kwargs) self.use_activation_checkpointing = use_activation_checkpointing self.tokenizer = BUILDER.build(tokenizer) self._add_special_tokens() self.grounding_encoder = BUILDER.build(grounding_encoder) self.grounding_encoder.requires_grad_(False) self.grounding_encoder.mask_decoder.requires_grad_(True) if region_encoder is not None: self.region_encoder = BUILDER.build(region_encoder) in_dim = self.config.hidden_size out_dim = self.grounding_encoder.mask_decoder.transformer_dim self.text_hidden_fcs = nn.Sequential( nn.Linear(in_dim, in_dim), nn.ReLU(inplace=True), nn.Linear(in_dim, out_dim), nn.Dropout(0.0) ) self.loss_mask = BUILDER.build(loss_mask) self.loss_dice = BUILDER.build(loss_dice) def _add_special_tokens(self): reg_tokens = ['', '', '', ''] segmentation_tokens = ['[SEG]'] phrase_tokens = ['

', '

'] special_tokens = reg_tokens + segmentation_tokens + phrase_tokens num_new_tokens = self.tokenizer.add_tokens( special_tokens, special_tokens=True) if num_new_tokens > 0: self.llm.resize_token_embeddings(len(self.tokenizer)) input_embeddings = self.llm.get_input_embeddings().weight.data output_embeddings = self.llm.get_output_embeddings().weight.data input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( dim=0, keepdim=True) output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( dim=0, keepdim=True) input_embeddings[-num_new_tokens:] = input_embeddings_avg output_embeddings[-num_new_tokens:] = output_embeddings_avg self.seg_token_idx = self.tokenizer("[SEG]", add_special_tokens=False).input_ids[0] self.bop_token_idx = self.tokenizer("

", add_special_tokens=False).input_ids[0] self.eop_token_idx = self.tokenizer("

", add_special_tokens=False).input_ids[0] self.bbox_token_idx = self.tokenizer("", add_special_tokens=False).input_ids[0] if self.use_activation_checkpointing or self.use_llm_lora or not self.freeze_llm: self.llm.enable_input_require_grads() def forward(self, data, data_samples=None, mode='loss'): if 'pixel_values' in data: visual_outputs = self.visual_encoder( data['pixel_values'].to(self.visual_encoder.dtype), output_hidden_states=True) pixel_values = self.projector( visual_outputs.hidden_states[self.visual_select_layer][:, 1:]) data['pixel_values'] = pixel_values bboxes = data.pop('bboxes', None) if bboxes is not None: select_hidden_state_layer = -2 num_level_reg_features = 4 mlvl_reg_features = visual_outputs.hidden_states[select_hidden_state_layer::-3] mlvl_reg_features = mlvl_reg_features[::-1] mlvl_reg_features = mlvl_reg_features[-num_level_reg_features:] mlvl_reg_features = [item[:, 1:] for item in mlvl_reg_features] mlvl_reg_features = self.region_encoder(mlvl_reg_features, bboxes) data = prepare_inputs_labels_for_multimodal(llm=self.llm, **data) if bboxes is not None: inputs_embeds = data['inputs_embeds'] for i, reg_feat in enumerate(mlvl_reg_features): reg_mask = data['new_input_ids'][i] == self.bbox_token_idx inputs_embeds[i][reg_mask] = reg_feat data['inputs_embeds'] = inputs_embeds if mode == 'loss': return self.compute_loss(data, data_samples) elif mode == 'predict': return self.predict(data, data_samples) elif mode == 'tensor': return self._forward(data, data_samples) else: raise NotImplementedError def compute_loss(self, data, data_samples=None): g_pixel_values = data.pop('g_pixel_values', None) gt_masks = data.pop('masks', None) new_input_ids = data.pop('new_input_ids', None) output = self.llm(output_hidden_states=True, **data) if gt_masks is None: return {'llm_loss': output.loss} resize_list = [pixel.shape[-2:] for pixel in g_pixel_values] ori_size_list = [mask.shape[-2:] for mask in gt_masks] g_pixel_values = torch.stack([ self.grounding_encoder.preprocess(pixel) for pixel in g_pixel_values ]) image_embeddings = self.grounding_encoder.image_encoder(g_pixel_values) seg_token_mask = new_input_ids == self.seg_token_idx hidden_states = output.hidden_states hidden_states = self.text_hidden_fcs(hidden_states[-1]) pred_embeddings = hidden_states[seg_token_mask] seg_token_counts = seg_token_mask.int().sum(-1) pred_embeddings_list = torch.split(pred_embeddings, seg_token_counts.tolist(), dim=0) pred_masks = self._generate_and_postprocess_masks( pred_embeddings_list, image_embeddings, resize_list, ori_size_list) bs = len(pred_masks) loss_mask, loss_dice = 0, 0 for i in range(bs): pred_mask = pred_masks[i] gt_mask = gt_masks[i] sam_loss_mask = self.loss_mask(pred_mask, gt_mask) sam_loss_dice = self.loss_dice(pred_mask, gt_mask) accuracy = torch.eq((pred_mask.sigmoid() > 0.5), gt_mask).to(pred_mask).mean() loss_mask += sam_loss_mask loss_dice += sam_loss_dice loss_dict = { 'loss_mask': loss_mask / bs, 'loss_dice': loss_dice / bs, 'accuracy': accuracy, 'llm_loss': output.loss, } return loss_dict def _generate_and_postprocess_masks(self, pred_embeddings, image_embeddings, resize_list=None, orig_size_list=None, infer=False): pred_masks = [] for i, pred_embedding in enumerate(pred_embeddings): sparse_embeddings, dense_embeddings = self.grounding_encoder.prompt_encoder( points=None, boxes=None, masks=None, text_embeds=pred_embedding.unsqueeze(1) ) sparse_embeddings = sparse_embeddings.to(pred_embedding.dtype) low_res_masks, _ = self.grounding_encoder.mask_decoder( image_embeddings=image_embeddings[i].unsqueeze(0), image_pe=self.grounding_encoder.prompt_encoder.get_dense_pe(), sparse_prompt_embeddings=sparse_embeddings, dense_prompt_embeddings=dense_embeddings, multimask_output=False, ) pred_mask = self.grounding_encoder.postprocess_masks( low_res_masks, input_size=resize_list[i], original_size=orig_size_list[i], ) pred_masks.append(pred_mask[:, 0]) return pred_masks def predict(self, data): pass def _forward(self, data, dta_samples=None): outputs = self.llm(**data) return outputs