# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn import torch.nn.functional as F from torchvision.transforms import Normalize, Resize, ToTensor class SAM2Transforms(nn.Module): def __init__( self, resolution, mask_threshold, max_hole_area=0.0, max_sprinkle_area=0.0 ): """ Transforms for SAM2. """ super().__init__() self.resolution = resolution self.mask_threshold = mask_threshold self.max_hole_area = max_hole_area self.max_sprinkle_area = max_sprinkle_area self.mean = [0.485, 0.456, 0.406] self.std = [0.229, 0.224, 0.225] self.to_tensor = ToTensor() self.transforms = torch.jit.script( nn.Sequential( Resize((self.resolution, self.resolution)), Normalize(self.mean, self.std), ) ) def __call__(self, x): x = self.to_tensor(x) return self.transforms(x) def forward_batch(self, img_list): img_batch = [self.transforms(self.to_tensor(img)) for img in img_list] img_batch = torch.stack(img_batch, dim=0) return img_batch def transform_coords( self, coords: torch.Tensor, normalize=False, orig_hw=None ) -> torch.Tensor: """ Expects a torch tensor with length 2 in the last dimension. The coordinates can be in absolute image or normalized coordinates, If the coords are in absolute image coordinates, normalize should be set to True and original image size is required. Returns Un-normalized coordinates in the range of [0, 1] which is expected by the SAM2 model. """ if normalize: assert orig_hw is not None h, w = orig_hw coords = coords.clone() coords[..., 0] = coords[..., 0] / w coords[..., 1] = coords[..., 1] / h coords = coords * self.resolution # unnormalize coords return coords def transform_boxes( self, boxes: torch.Tensor, normalize=False, orig_hw=None ) -> torch.Tensor: """ Expects a tensor of shape Bx4. The coordinates can be in absolute image or normalized coordinates, if the coords are in absolute image coordinates, normalize should be set to True and original image size is required. """ boxes = self.transform_coords(boxes.reshape(-1, 2, 2), normalize, orig_hw) return boxes def postprocess_masks(self, masks: torch.Tensor, orig_hw) -> torch.Tensor: """ Perform PostProcessing on output masks. """ from third_parts.sam2.utils.misc import get_connected_components masks = masks.float() if self.max_hole_area > 0: # Holes are those connected components in background with area <= self.fill_hole_area # (background regions are those with mask scores <= self.mask_threshold) mask_flat = masks.flatten(0, 1).unsqueeze(1) # flatten as 1-channel image labels, areas = get_connected_components(mask_flat <= self.mask_threshold) is_hole = (labels > 0) & (areas <= self.max_hole_area) is_hole = is_hole.reshape_as(masks) # We fill holes with a small positive mask score (10.0) to change them to foreground. masks = torch.where(is_hole, self.mask_threshold + 10.0, masks) if self.max_sprinkle_area > 0: labels, areas = get_connected_components(mask_flat > self.mask_threshold) is_hole = (labels > 0) & (areas <= self.max_sprinkle_area) is_hole = is_hole.reshape_as(masks) # We fill holes with negative mask score (-10.0) to change them to background. masks = torch.where(is_hole, self.mask_threshold - 10.0, masks) masks = F.interpolate(masks, orig_hw, mode="bilinear", align_corners=False) return masks