# Copyright (c) OpenMMLab. All rights reserved. import warnings import torch import torch.nn as nn import torch.nn.functional as F # from mmdet.registry import MODELS from .accuracy import accuracy from .utils import weight_reduce_loss def cross_entropy(pred, label, weight=None, reduction='mean', avg_factor=None, class_weight=None, ignore_index=-100, avg_non_ignore=False): """Calculate the CrossEntropy loss. Args: pred (torch.Tensor): The prediction with shape (N, C), C is the number of classes. label (torch.Tensor): The learning label of the prediction. weight (torch.Tensor, optional): Sample-wise loss weight. reduction (str, optional): The method used to reduce the loss. avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. class_weight (list[float], optional): The weight for each class. ignore_index (int | None): The label index to be ignored. If None, it will be set to default value. Default: -100. avg_non_ignore (bool): The flag decides to whether the loss is only averaged over non-ignored targets. Default: False. Returns: torch.Tensor: The calculated loss """ # The default value of ignore_index is the same as F.cross_entropy ignore_index = -100 if ignore_index is None else ignore_index # element-wise losses loss = F.cross_entropy( pred, label, weight=class_weight, reduction='none', ignore_index=ignore_index) # average loss over non-ignored elements # pytorch's official cross_entropy average loss over non-ignored elements # refer to https://github.com/pytorch/pytorch/blob/56b43f4fec1f76953f15a627694d4bba34588969/torch/nn/functional.py#L2660 # noqa if (avg_factor is None) and avg_non_ignore and reduction == 'mean': avg_factor = label.numel() - (label == ignore_index).sum().item() # apply weights and do the reduction if weight is not None: weight = weight.float() loss = weight_reduce_loss( loss, weight=weight, reduction=reduction, avg_factor=avg_factor) return loss def _expand_onehot_labels(labels, label_weights, label_channels, ignore_index): """Expand onehot labels to match the size of prediction.""" bin_labels = labels.new_full((labels.size(0), label_channels), 0) valid_mask = (labels >= 0) & (labels != ignore_index) inds = torch.nonzero( valid_mask & (labels < label_channels), as_tuple=False) if inds.numel() > 0: bin_labels[inds, labels[inds]] = 1 valid_mask = valid_mask.view(-1, 1).expand(labels.size(0), label_channels).float() if label_weights is None: bin_label_weights = valid_mask else: bin_label_weights = label_weights.view(-1, 1).repeat(1, label_channels) bin_label_weights *= valid_mask return bin_labels, bin_label_weights, valid_mask def binary_cross_entropy(pred, label, weight=None, reduction='mean', avg_factor=None, class_weight=None, ignore_index=-100, avg_non_ignore=False): """Calculate the binary CrossEntropy loss. Args: pred (torch.Tensor): The prediction with shape (N, 1) or (N, ). When the shape of pred is (N, 1), label will be expanded to one-hot format, and when the shape of pred is (N, ), label will not be expanded to one-hot format. label (torch.Tensor): The learning label of the prediction, with shape (N, ). weight (torch.Tensor, optional): Sample-wise loss weight. reduction (str, optional): The method used to reduce the loss. Options are "none", "mean" and "sum". avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. class_weight (list[float], optional): The weight for each class. ignore_index (int | None): The label index to be ignored. If None, it will be set to default value. Default: -100. avg_non_ignore (bool): The flag decides to whether the loss is only averaged over non-ignored targets. Default: False. Returns: torch.Tensor: The calculated loss. """ # The default value of ignore_index is the same as F.cross_entropy ignore_index = -100 if ignore_index is None else ignore_index if pred.dim() != label.dim(): label, weight, valid_mask = _expand_onehot_labels( label, weight, pred.size(-1), ignore_index) else: # should mask out the ignored elements valid_mask = ((label >= 0) & (label != ignore_index)).float() if weight is not None: # The inplace writing method will have a mismatched broadcast # shape error if the weight and valid_mask dimensions # are inconsistent such as (B,N,1) and (B,N,C). weight = weight * valid_mask else: weight = valid_mask # average loss over non-ignored elements if (avg_factor is None) and avg_non_ignore and reduction == 'mean': avg_factor = valid_mask.sum().item() # weighted element-wise losses weight = weight.float() loss = F.binary_cross_entropy_with_logits( pred, label.float(), pos_weight=class_weight, reduction='none') # do the reduction for the weighted loss loss = weight_reduce_loss( loss, weight, reduction=reduction, avg_factor=avg_factor) return loss def mask_cross_entropy(pred, target, label, reduction='mean', avg_factor=None, class_weight=None, ignore_index=None, **kwargs): """Calculate the CrossEntropy loss for masks. Args: pred (torch.Tensor): The prediction with shape (N, C, *), C is the number of classes. The trailing * indicates arbitrary shape. target (torch.Tensor): The learning label of the prediction. label (torch.Tensor): ``label`` indicates the class label of the mask corresponding object. This will be used to select the mask in the of the class which the object belongs to when the mask prediction if not class-agnostic. reduction (str, optional): The method used to reduce the loss. Options are "none", "mean" and "sum". avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. class_weight (list[float], optional): The weight for each class. ignore_index (None): Placeholder, to be consistent with other loss. Default: None. Returns: torch.Tensor: The calculated loss Example: >>> N, C = 3, 11 >>> H, W = 2, 2 >>> pred = torch.randn(N, C, H, W) * 1000 >>> target = torch.rand(N, H, W) >>> label = torch.randint(0, C, size=(N,)) >>> reduction = 'mean' >>> avg_factor = None >>> class_weights = None >>> loss = mask_cross_entropy(pred, target, label, reduction, >>> avg_factor, class_weights) >>> assert loss.shape == (1,) """ assert ignore_index is None, 'BCE loss does not support ignore_index' # TODO: handle these two reserved arguments assert reduction == 'mean' and avg_factor is None num_rois = pred.size()[0] inds = torch.arange(0, num_rois, dtype=torch.long, device=pred.device) pred_slice = pred[inds, label].squeeze(1) return F.binary_cross_entropy_with_logits( pred_slice, target, weight=class_weight, reduction='mean')[None] # @MODELS.register_module() class CrossEntropyLoss(nn.Module): def __init__(self, use_sigmoid=False, use_mask=False, reduction='mean', class_weight=None, ignore_index=None, loss_weight=1.0, avg_non_ignore=False): """CrossEntropyLoss. Args: use_sigmoid (bool, optional): Whether the prediction uses sigmoid of softmax. Defaults to False. use_mask (bool, optional): Whether to use mask cross entropy loss. Defaults to False. reduction (str, optional): . Defaults to 'mean'. Options are "none", "mean" and "sum". class_weight (list[float], optional): Weight of each class. Defaults to None. ignore_index (int | None): The label index to be ignored. Defaults to None. loss_weight (float, optional): Weight of the loss. Defaults to 1.0. avg_non_ignore (bool): The flag decides to whether the loss is only averaged over non-ignored targets. Default: False. """ super(CrossEntropyLoss, self).__init__() assert (use_sigmoid is False) or (use_mask is False) self.use_sigmoid = use_sigmoid self.use_mask = use_mask self.reduction = reduction self.loss_weight = loss_weight self.class_weight = class_weight self.ignore_index = ignore_index self.avg_non_ignore = avg_non_ignore if ((ignore_index is not None) and not self.avg_non_ignore and self.reduction == 'mean'): warnings.warn( 'Default ``avg_non_ignore`` is False, if you would like to ' 'ignore the certain label and average loss over non-ignore ' 'labels, which is the same with PyTorch official ' 'cross_entropy, set ``avg_non_ignore=True``.') if self.use_sigmoid: self.cls_criterion = binary_cross_entropy elif self.use_mask: self.cls_criterion = mask_cross_entropy else: self.cls_criterion = cross_entropy def extra_repr(self): """Extra repr.""" s = f'avg_non_ignore={self.avg_non_ignore}' return s def forward(self, cls_score, label, weight=None, avg_factor=None, reduction_override=None, ignore_index=None, **kwargs): """Forward function. Args: cls_score (torch.Tensor): The prediction. label (torch.Tensor): The learning label of the prediction. weight (torch.Tensor, optional): Sample-wise loss weight. avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. reduction_override (str, optional): The method used to reduce the loss. Options are "none", "mean" and "sum". ignore_index (int | None): The label index to be ignored. If not None, it will override the default value. Default: None. Returns: torch.Tensor: The calculated loss. """ assert reduction_override in (None, 'none', 'mean', 'sum') reduction = ( reduction_override if reduction_override else self.reduction) if ignore_index is None: ignore_index = self.ignore_index if self.class_weight is not None: class_weight = cls_score.new_tensor( self.class_weight, device=cls_score.device) else: class_weight = None loss_cls = self.loss_weight * self.cls_criterion( cls_score, label, weight, class_weight=class_weight, reduction=reduction, avg_factor=avg_factor, ignore_index=ignore_index, avg_non_ignore=self.avg_non_ignore, **kwargs) return loss_cls # @MODELS.register_module() class CrossEntropyCustomLoss(CrossEntropyLoss): def __init__(self, use_sigmoid=False, use_mask=False, reduction='mean', num_classes=-1, class_weight=None, ignore_index=None, loss_weight=1.0, avg_non_ignore=False): """CrossEntropyCustomLoss. Args: use_sigmoid (bool, optional): Whether the prediction uses sigmoid of softmax. Defaults to False. use_mask (bool, optional): Whether to use mask cross entropy loss. Defaults to False. reduction (str, optional): . Defaults to 'mean'. Options are "none", "mean" and "sum". num_classes (int): Number of classes to classify. class_weight (list[float], optional): Weight of each class. Defaults to None. ignore_index (int | None): The label index to be ignored. Defaults to None. loss_weight (float, optional): Weight of the loss. Defaults to 1.0. avg_non_ignore (bool): The flag decides to whether the loss is only averaged over non-ignored targets. Default: False. """ super(CrossEntropyCustomLoss, self).__init__() assert (use_sigmoid is False) or (use_mask is False) self.use_sigmoid = use_sigmoid self.use_mask = use_mask self.reduction = reduction self.loss_weight = loss_weight self.class_weight = class_weight self.ignore_index = ignore_index self.avg_non_ignore = avg_non_ignore if ((ignore_index is not None) and not self.avg_non_ignore and self.reduction == 'mean'): warnings.warn( 'Default ``avg_non_ignore`` is False, if you would like to ' 'ignore the certain label and average loss over non-ignore ' 'labels, which is the same with PyTorch official ' 'cross_entropy, set ``avg_non_ignore=True``.') if self.use_sigmoid: self.cls_criterion = binary_cross_entropy elif self.use_mask: self.cls_criterion = mask_cross_entropy else: self.cls_criterion = cross_entropy self.num_classes = num_classes assert self.num_classes != -1 # custom output channels of the classifier self.custom_cls_channels = True # custom activation of cls_score self.custom_activation = True # custom accuracy of the classsifier self.custom_accuracy = True def get_cls_channels(self, num_classes): assert num_classes == self.num_classes if not self.use_sigmoid: return num_classes + 1 else: return num_classes def get_activation(self, cls_score): fine_cls_score = cls_score[:, :self.num_classes] if not self.use_sigmoid: bg_score = cls_score[:, [-1]] new_score = torch.cat([fine_cls_score, bg_score], dim=-1) scores = F.softmax(new_score, dim=-1) else: score_classes = fine_cls_score.sigmoid() score_neg = 1 - score_classes.sum(dim=1, keepdim=True) score_neg = score_neg.clamp(min=0, max=1) scores = torch.cat([score_classes, score_neg], dim=1) return scores def get_accuracy(self, cls_score, labels): fine_cls_score = cls_score[:, :self.num_classes] pos_inds = labels < self.num_classes acc_classes = accuracy(fine_cls_score[pos_inds], labels[pos_inds]) acc = dict() acc['acc_classes'] = acc_classes return acc