khang119966 commited on
Commit
8c62682
·
verified ·
1 Parent(s): dd12d9a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -3
app.py CHANGED
@@ -129,7 +129,7 @@ We currently only support one image at the start of the context! Please start a
129
  pixel_values = None
130
 
131
 
132
- generation_config = dict(max_new_tokens= 512, do_sample=False, num_beams = 3, repetition_penalty=2.0)
133
 
134
  if len(history) == 0:
135
  if pixel_values is not None:
@@ -226,8 +226,8 @@ button.svelte-1lcyrx4[aria-label="user's message: a file of type image/jpeg, "]
226
 
227
  demo = gr.ChatInterface(
228
  fn=chat,
229
- description="""Try [Vintern-3B-beta](https://huggingface.co/5CD-AI/Vintern-3B-beta) in this demo. Vintern-3B-beta consists of [InternViT-300M-448px](https://huggingface.co/OpenGVLab/InternViT-300M-448px), an MLP projector, and [Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct).
230
- Bias, Risks, and Limitations
231
  The model might have biases because it learned from data that could be biased.
232
  Users should be cautious of these possible biases when using the model.""",
233
  examples=[{"text": "Mô tả hình ảnh.", "files":["./demo_3.jpg"]},
 
129
  pixel_values = None
130
 
131
 
132
+ generation_config = dict(max_new_tokens= 512, do_sample=False, num_beams = 3, repetition_penalty=1.5)
133
 
134
  if len(history) == 0:
135
  if pixel_values is not None:
 
226
 
227
  demo = gr.ChatInterface(
228
  fn=chat,
229
+ description="""We introduce Vintern-1B-v3.5, the latest version in the Vintern series, offering significant improvements over v2 across all evaluation benchmarks. This model has been fine-tuned from InternVL-1B-2.5, which already good in Vietnamese 🇻🇳 tasks because it used Viet-ShareGPT-4o-Text-VQA data during its fine-tuning process by the InternVL 2.5 [1] team.
230
+ To further enhance its performance in Vietnamese while maintaining good capabilities on existing English datasets, Vintern-1B-v3.5 has been fine-tuned using a vast amount of Vietnamese-specific data. This results in a model that is exceptionally powerful in text recognition, OCR, and understanding Vietnam-specific documents.
231
  The model might have biases because it learned from data that could be biased.
232
  Users should be cautious of these possible biases when using the model.""",
233
  examples=[{"text": "Mô tả hình ảnh.", "files":["./demo_3.jpg"]},