Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from xtuner.registry import BUILDER | |
from xtuner.model.utils import LoadWoInit, guess_load_checkpoint | |
from xtuner.model.llava import LLaVAModel | |
from mmengine.model import BaseModel | |
from mmengine import print_log | |
from projects.glamm.utils import prepare_inputs_labels_for_multimodal | |
from projects.glamm.utils import DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN | |
class GLaMM(LLaVAModel): | |
def __init__(self, | |
use_activation_checkpointing=True, | |
tokenizer=None, | |
grounding_encoder=None, | |
region_encoder=None, | |
loss_mask=None, | |
loss_dice=None, | |
*args, **kwargs): | |
super(GLaMM, self).__init__( | |
*args, use_activation_checkpointing=use_activation_checkpointing, **kwargs) | |
self.use_activation_checkpointing = use_activation_checkpointing | |
self.tokenizer = BUILDER.build(tokenizer) | |
self._add_special_tokens() | |
self.grounding_encoder = BUILDER.build(grounding_encoder) | |
self.grounding_encoder.requires_grad_(False) | |
self.grounding_encoder.mask_decoder.requires_grad_(True) | |
if region_encoder is not None: | |
self.region_encoder = BUILDER.build(region_encoder) | |
in_dim = self.config.hidden_size | |
out_dim = self.grounding_encoder.mask_decoder.transformer_dim | |
self.text_hidden_fcs = nn.Sequential( | |
nn.Linear(in_dim, in_dim), nn.ReLU(inplace=True), | |
nn.Linear(in_dim, out_dim), nn.Dropout(0.0) | |
) | |
self.loss_mask = BUILDER.build(loss_mask) | |
self.loss_dice = BUILDER.build(loss_dice) | |
def _add_special_tokens(self): | |
reg_tokens = ['<im_start>', '<im_end>', '<bbox>', '<point>'] | |
segmentation_tokens = ['[SEG]'] | |
phrase_tokens = ['<p>', '</p>'] | |
special_tokens = reg_tokens + segmentation_tokens + phrase_tokens | |
num_new_tokens = self.tokenizer.add_tokens( | |
special_tokens, special_tokens=True) | |
if num_new_tokens > 0: | |
self.llm.resize_token_embeddings(len(self.tokenizer)) | |
input_embeddings = self.llm.get_input_embeddings().weight.data | |
output_embeddings = self.llm.get_output_embeddings().weight.data | |
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( | |
dim=0, keepdim=True) | |
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( | |
dim=0, keepdim=True) | |
input_embeddings[-num_new_tokens:] = input_embeddings_avg | |
output_embeddings[-num_new_tokens:] = output_embeddings_avg | |
self.seg_token_idx = self.tokenizer("[SEG]", add_special_tokens=False).input_ids[0] | |
self.bop_token_idx = self.tokenizer("<p>", add_special_tokens=False).input_ids[0] | |
self.eop_token_idx = self.tokenizer("</p>", add_special_tokens=False).input_ids[0] | |
self.bbox_token_idx = self.tokenizer("<bbox>", add_special_tokens=False).input_ids[0] | |
if self.use_activation_checkpointing or self.use_llm_lora or not self.freeze_llm: | |
self.llm.enable_input_require_grads() | |
def forward(self, data, data_samples=None, mode='loss'): | |
if 'pixel_values' in data: | |
visual_outputs = self.visual_encoder( | |
data['pixel_values'].to(self.visual_encoder.dtype), | |
output_hidden_states=True) | |
pixel_values = self.projector( | |
visual_outputs.hidden_states[self.visual_select_layer][:, 1:]) | |
data['pixel_values'] = pixel_values | |
bboxes = data.pop('bboxes', None) | |
if bboxes is not None: | |
select_hidden_state_layer = -2 | |
num_level_reg_features = 4 | |
mlvl_reg_features = visual_outputs.hidden_states[select_hidden_state_layer::-3] | |
mlvl_reg_features = mlvl_reg_features[::-1] | |
mlvl_reg_features = mlvl_reg_features[-num_level_reg_features:] | |
mlvl_reg_features = [item[:, 1:] for item in mlvl_reg_features] | |
mlvl_reg_features = self.region_encoder(mlvl_reg_features, bboxes) | |
data = prepare_inputs_labels_for_multimodal(llm=self.llm, **data) | |
if bboxes is not None: | |
inputs_embeds = data['inputs_embeds'] | |
for i, reg_feat in enumerate(mlvl_reg_features): | |
reg_mask = data['new_input_ids'][i] == self.bbox_token_idx | |
inputs_embeds[i][reg_mask] = reg_feat | |
data['inputs_embeds'] = inputs_embeds | |
if mode == 'loss': | |
return self.compute_loss(data, data_samples) | |
elif mode == 'predict': | |
return self.predict(data, data_samples) | |
elif mode == 'tensor': | |
return self._forward(data, data_samples) | |
else: | |
raise NotImplementedError | |
def compute_loss(self, data, data_samples=None): | |
g_pixel_values = data.pop('g_pixel_values', None) | |
gt_masks = data.pop('masks', None) | |
new_input_ids = data.pop('new_input_ids', None) | |
output = self.llm(output_hidden_states=True, **data) | |
if gt_masks is None: | |
return {'llm_loss': output.loss} | |
resize_list = [pixel.shape[-2:] for pixel in g_pixel_values] | |
ori_size_list = [mask.shape[-2:] for mask in gt_masks] | |
g_pixel_values = torch.stack([ | |
self.grounding_encoder.preprocess(pixel) for pixel in g_pixel_values | |
]) | |
image_embeddings = self.grounding_encoder.image_encoder(g_pixel_values) | |
seg_token_mask = new_input_ids == self.seg_token_idx | |
hidden_states = output.hidden_states | |
hidden_states = self.text_hidden_fcs(hidden_states[-1]) | |
pred_embeddings = hidden_states[seg_token_mask] | |
seg_token_counts = seg_token_mask.int().sum(-1) | |
pred_embeddings_list = torch.split(pred_embeddings, seg_token_counts.tolist(), dim=0) | |
pred_masks = self._generate_and_postprocess_masks( | |
pred_embeddings_list, image_embeddings, resize_list, ori_size_list) | |
bs = len(pred_masks) | |
loss_mask, loss_dice = 0, 0 | |
for i in range(bs): | |
pred_mask = pred_masks[i] | |
gt_mask = gt_masks[i] | |
sam_loss_mask = self.loss_mask(pred_mask, gt_mask) | |
sam_loss_dice = self.loss_dice(pred_mask, gt_mask) | |
accuracy = torch.eq((pred_mask.sigmoid() > 0.5), gt_mask).to(pred_mask).mean() | |
loss_mask += sam_loss_mask | |
loss_dice += sam_loss_dice | |
loss_dict = { | |
'loss_mask': loss_mask / bs, | |
'loss_dice': loss_dice / bs, | |
'accuracy': accuracy, | |
'llm_loss': output.loss, | |
} | |
return loss_dict | |
def _generate_and_postprocess_masks(self, pred_embeddings, image_embeddings, resize_list=None, orig_size_list=None, infer=False): | |
pred_masks = [] | |
for i, pred_embedding in enumerate(pred_embeddings): | |
sparse_embeddings, dense_embeddings = self.grounding_encoder.prompt_encoder( | |
points=None, boxes=None, masks=None, text_embeds=pred_embedding.unsqueeze(1) | |
) | |
sparse_embeddings = sparse_embeddings.to(pred_embedding.dtype) | |
low_res_masks, _ = self.grounding_encoder.mask_decoder( | |
image_embeddings=image_embeddings[i].unsqueeze(0), | |
image_pe=self.grounding_encoder.prompt_encoder.get_dense_pe(), | |
sparse_prompt_embeddings=sparse_embeddings, dense_prompt_embeddings=dense_embeddings, | |
multimask_output=False, ) | |
pred_mask = self.grounding_encoder.postprocess_masks( | |
low_res_masks, input_size=resize_list[i], original_size=orig_size_list[i], ) | |
pred_masks.append(pred_mask[:, 0]) | |
return pred_masks | |
def predict(self, data): | |
pass | |
def _forward(self, data, dta_samples=None): | |
outputs = self.llm(**data) | |
return outputs | |