fffiloni's picture
Migrated from GitHub
d59f323 verified
raw
history blame
14.1 kB
from abc import ABCMeta, abstractmethod
from typing import List, Optional, Tuple
from torch import Tensor
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv import ops
from mmcv.cnn import ConvModule, Linear
from mmengine.model import BaseModule
class BaseRoIExtractor(BaseModule, metaclass=ABCMeta):
"""Base class for RoI extractor.
Args:
roi_layer (:obj:`ConfigDict` or dict): Specify RoI layer type and
arguments.
out_channels (int): Output channels of RoI layers.
featmap_strides (list[int]): Strides of input feature maps.
init_cfg (:obj:`ConfigDict` or dict or list[:obj:`ConfigDict` or \
dict], optional): Initialization config dict. Defaults to None.
"""
def __init__(self,
roi_layer,
out_channels: int,
featmap_strides: List[int],
init_cfg=None) -> None:
super().__init__(init_cfg=init_cfg)
self.roi_layers = self.build_roi_layers(roi_layer, featmap_strides)
self.out_channels = out_channels
self.featmap_strides = featmap_strides
@property
def num_inputs(self) -> int:
"""int: Number of input feature maps."""
return len(self.featmap_strides)
def build_roi_layers(self, layer_cfg,
featmap_strides: List[int]) -> nn.ModuleList:
"""Build RoI operator to extract feature from each level feature map.
Args:
layer_cfg (:obj:`ConfigDict` or dict): Dictionary to construct and
config RoI layer operation. Options are modules under
``mmcv/ops`` such as ``RoIAlign``.
featmap_strides (list[int]): The stride of input feature map w.r.t
to the original image size, which would be used to scale RoI
coordinate (original image coordinate system) to feature
coordinate system.
Returns:
:obj:`nn.ModuleList`: The RoI extractor modules for each level
feature map.
"""
cfg = layer_cfg.copy()
layer_type = cfg.pop('type')
if isinstance(layer_type, str):
assert hasattr(ops, layer_type)
layer_cls = getattr(ops, layer_type)
else:
layer_cls = layer_type
roi_layers = nn.ModuleList(
[layer_cls(spatial_scale=1 / s, **cfg) for s in featmap_strides])
return roi_layers
def roi_rescale(self, rois: Tensor, scale_factor: float) -> Tensor:
"""Scale RoI coordinates by scale factor.
Args:
rois (Tensor): RoI (Region of Interest), shape (n, 5)
scale_factor (float): Scale factor that RoI will be multiplied by.
Returns:
Tensor: Scaled RoI.
"""
cx = (rois[:, 1] + rois[:, 3]) * 0.5
cy = (rois[:, 2] + rois[:, 4]) * 0.5
w = rois[:, 3] - rois[:, 1]
h = rois[:, 4] - rois[:, 2]
new_w = w * scale_factor
new_h = h * scale_factor
x1 = cx - new_w * 0.5
x2 = cx + new_w * 0.5
y1 = cy - new_h * 0.5
y2 = cy + new_h * 0.5
new_rois = torch.stack((rois[:, 0], x1, y1, x2, y2), dim=-1)
return new_rois
@abstractmethod
def forward(self,
feats: Tuple[Tensor],
rois: Tensor,
roi_scale_factor: Optional[float] = None) -> Tensor:
"""Extractor ROI feats.
Args:
feats (Tuple[Tensor]): Multi-scale features.
rois (Tensor): RoIs with the shape (n, 5) where the first
column indicates batch id of each RoI.
roi_scale_factor (Optional[float]): RoI scale factor.
Defaults to None.
Returns:
Tensor: RoI feature.
"""
pass
class MLVLFuseModule(nn.Module):
def __init__(self, input_dims=1024, embed_dims=1024, num_levels=3, num_fuse=4):
super(MLVLFuseModule, self).__init__()
self.embed_dims = embed_dims
self.num_levels = num_levels
self.num_fuse = num_fuse
self.input_dims = input_dims
self.shuffle_channles = embed_dims // 4
# contains the tuple of level indices that will do the interaction
self.fuse_lvl_list = []
num_levels = self.num_levels
for lvl in range(num_levels):
top_lvl = min(lvl + 1, num_levels - 1)
dow_lvl = max(lvl - 1, 0)
tar_lvl = lvl
self.fuse_lvl_list.append((tar_lvl, top_lvl, dow_lvl))
self.remain_chs = self.embed_dims - self.shuffle_channles * 2
self._init_layers()
def generate_coordinate(self, featmap_sizes, device='cuda'):
x_range = torch.linspace(-1, 1, featmap_sizes[-1], device=device)
y_range = torch.linspace(-1, 1, featmap_sizes[-2], device=device)
y, x = torch.meshgrid(y_range, x_range)
y = y.expand([featmap_sizes[0], 1, -1, -1])
x = x.expand([featmap_sizes[0], 1, -1, -1])
coord_feat = torch.cat([x, y], 1)
return coord_feat
def _init_layers(self):
self.input_conv = nn.ModuleList([nn.Conv2d(self.input_dims + 2,
self.embed_dims, 1)
for _ in range(self.num_levels)])
self.fuse_convs = nn.ModuleList()
for i in range(self.num_fuse):
self.fuse_convs.append(
ConvModule(self.embed_dims,
self.embed_dims,
3,
stride=1,
padding=3 // 2,
conv_cfg=None,
norm_cfg=dict(type='GN',
num_groups=64,
requires_grad=True)
))
def init_weights(self):
pass
def _single_shuffle(self, inputs, conv_module):
if not isinstance(conv_module, (nn.ModuleList, list)):
conv_module = [conv_module]
for single_conv_m in conv_module:
fused_inputs = []
for fuse_lvl_tuple in self.fuse_lvl_list:
tar_lvl, top_lvl, dow_lvl = fuse_lvl_tuple
tar_input = inputs[tar_lvl]
top_input = inputs[top_lvl]
down_input = inputs[dow_lvl]
remain = tar_input[:, :self.remain_chs]
from_top = top_input[:, self.remain_chs:][:, self.shuffle_channles:]
from_top = F.interpolate(from_top.to(torch.float32),
size=tar_input.shape[-2:],
mode='bilinear',
align_corners=True)
from_down = down_input[:, self.remain_chs:][:, :self.shuffle_channles]
from_down = F.interpolate(from_down.to(torch.float32),
size=tar_input.shape[-2:],
mode='bilinear',
align_corners=True)
fused_inputs.append(
torch.cat([remain, from_top.to(remain.dtype), from_down.to(remain.dtype)], dim=1))
fused_inputs = [single_conv_m(item) for item in fused_inputs]
inputs = fused_inputs
return inputs
def forward(self, inputs, ):
feat_size = [item.shape for item in inputs]
new_inputs = []
for feat, single_feat_size in zip(inputs, feat_size):
coord_feat = self.generate_coordinate(
single_feat_size, device=inputs[0].device)
# feat = torch.cat([feat, coord_feat], dim=1)
feat = torch.cat([feat, coord_feat.to(feat.dtype)], dim=1)
new_inputs.append(feat)
inputs = new_inputs
inputs = [self.input_conv[lvl](item)
for lvl, item in enumerate(inputs)]
for conv_m in self.fuse_convs:
inputs = self._single_shuffle(inputs, [conv_m])
return inputs
class MlvlRoIExtractor(BaseRoIExtractor):
def __init__(self,
roi_layer,
out_channels,
featmap_strides,
embed_dims=1024,
stride=1,
norm_init=True,
fuse_level=3,
finest_scale=56,
init_cfg=None):
super(MlvlRoIExtractor, self).__init__(roi_layer, out_channels,
featmap_strides, init_cfg)
self.embed_dims = embed_dims
self.finest_scale = finest_scale
self.fuse_level = fuse_level
self.norm_init = norm_init
self.pconvs = nn.ModuleList(
nn.Conv2d(self.embed_dims, self.embed_dims, 3, stride=1, padding=1)
for _ in range(self.fuse_level))
self.pos_embedd = nn.Sequential(
nn.Linear(4, 256),
nn.ReLU(inplace=True),
nn.LayerNorm(256),
nn.Linear(256, 1024),
nn.ReLU(inplace=True),
nn.LayerNorm(1024),
)
self.updims = nn.Linear(1024, 4096)
self.flatten_linear = nn.Linear(
self.embed_dims * self.roi_layers[0].output_size[0] ** 2, 1024)
self.norm_init_weights()
# self.dtype = torch.float32
def norm_init_weights(self):
pass
def forward(self, feats, rois, roi_scale_factor=None):
"""Forward function."""
num_imgs = len(rois)
# feats = [item for item in feats]
batch_rois = torch.cat(rois, dim=0).to(feats[0].dtype)
pos_embedd = self.pos_embedd(batch_rois)
out_size = self.roi_layers[0].output_size
num_levels = len(feats)
if feats[0].dim() == 3:
h = w = int(math.sqrt(feats[0].shape[1]))
assert h == 16
assert w == 16
b, c = feats[0].shape[0], feats[0].shape[-1]
feats = [item.reshape(b, h, w, c).permute(0, 3, 1, 2)
for item in feats]
new_rois = []
for img_id, single_img_roi in enumerate(rois):
# rescale to original img scale
single_img_roi = single_img_roi * 224
roi_img_id = single_img_roi.new_ones(len(single_img_roi)) * img_id
single_img_roi = torch.cat(
[roi_img_id[:, None], single_img_roi], dim=1)
new_rois.append(single_img_roi)
rois = torch.cat(new_rois)
roi_feats = feats[0].new_zeros(self.fuse_level,
rois.size(0), self.out_channels, *out_size)
for i in range(num_levels):
if len(rois) > 0:
rois_ = rois
ori_dtype = feats[i].dtype
roi_feats_t = self.roi_layers[i](feats[i].to(
torch.float32), rois_.to(torch.float32))
roi_feats[i] = roi_feats_t.to(ori_dtype)
else:
roi_feats += sum(
x.view(-1)[0]
for x in self.parameters()) * 0. + feats[i].sum() * 0.
fuse_roi_feats = []
for i in range(self.fuse_level):
fuse_roi_feats.append(self.pconvs[i](roi_feats[i]))
fuse_roi_feats = sum(fuse_roi_feats)
fuse_roi_feats = F.relu(fuse_roi_feats)
fuse_roi_feats = fuse_roi_feats.flatten(1, -1)
fuse_roi_feats = self.flatten_linear(fuse_roi_feats)
fuse_roi_feats = fuse_roi_feats + pos_embedd
fuse_roi_feats = self.updims(fuse_roi_feats)
query_feats = []
for i in range(num_imgs):
mask = rois[:, 0] == i
query_feats.append(fuse_roi_feats[mask])
return query_feats
class MLVLROIQueryModule(nn.Module):
def __init__(self, embed_dims=1024, out_dims=4096,
num_levels=3):
super(MLVLROIQueryModule, self).__init__()
self.mlvl_fuse = MLVLFuseModule(input_dims=embed_dims,
embed_dims=embed_dims,
num_levels=num_levels,
num_fuse=5)
strids = [14 / 8, 14 / 4, 14 / 2, 14]
assert len(strids) == num_levels
bbox_roi_extractor = dict(roi_layer=dict(type='RoIAlign',
output_size=14,
sampling_ratio=2),
out_channels=embed_dims,
embed_dims=embed_dims,
fuse_level=num_levels,
featmap_strides=strids)
self.roi_align = MlvlRoIExtractor(**bbox_roi_extractor)
def forward(self, mlvl_feats, bboxes):
if mlvl_feats[0].dim() == 3:
h = w = int(math.sqrt(mlvl_feats[0].shape[1]))
assert h == 24
assert w == 24
b, c = mlvl_feats[0].shape[0], mlvl_feats[0].shape[-1]
mlvl_feats = [item.reshape(b, h, w, c).permute(0, 3, 1, 2) for item in mlvl_feats]
base_shape = mlvl_feats[0].shape[-2:]
num_level = len(mlvl_feats)
to_shape = [(base_shape[0] * 2 ** level, base_shape[1] * 2 ** level)
for level in range(num_level)]
to_shape = to_shape[::-1]
for level in range(num_level):
feat = mlvl_feats[level]
shape = to_shape[level]
# feat = feat
# mlvl_feats[level] = F.interpolate(feat, size=shape, mode='bilinear', align_corners=True)
# todo: temporary fix for "upsample_bilinear2d_out_frame" not implemented for 'BFloat16'
feat = feat.to(torch.float32)
mlvl_feats[level] = F.interpolate(
feat, size=shape, mode='bilinear', align_corners=True)
mlvl_feats[level] = mlvl_feats[level].to(torch.bfloat16)
mlvl_feats = self.mlvl_fuse(mlvl_feats)
return self.roi_align(mlvl_feats, bboxes)