Spaces:
Sleeping
Sleeping
import argparse | |
import os | |
from PIL import Image | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import cv2 | |
try: | |
from mmengine.visualization import Visualizer | |
except ImportError: | |
Visualizer = None | |
print("Warning: mmengine is not installed, visualization is disabled.") | |
def parse_args(): | |
parser = argparse.ArgumentParser(description='Video Reasoning Segmentation') | |
parser.add_argument('image_folder', help='Path to image file') | |
parser.add_argument('--model_path', default="ByteDance/Sa2VA-8B") | |
parser.add_argument('--work-dir', default=None, help='The dir to save results.') | |
parser.add_argument('--text', type=str, default="<image>Please describe the video content.") | |
parser.add_argument('--select', type=int, default=-1) | |
args = parser.parse_args() | |
return args | |
def visualize(pred_mask, image_path, work_dir): | |
visualizer = Visualizer() | |
img = cv2.imread(image_path) | |
visualizer.set_image(img) | |
visualizer.draw_binary_masks(pred_mask, colors='g', alphas=0.4) | |
visual_result = visualizer.get_image() | |
output_path = os.path.join(work_dir, os.path.basename(image_path)) | |
cv2.imwrite(output_path, visual_result) | |
if __name__ == "__main__": | |
cfg = parse_args() | |
model_path = cfg.model_path | |
model = AutoModelForCausalLM.from_pretrained( | |
model_path, | |
torch_dtype="auto", | |
device_map="auto", | |
trust_remote_code=True | |
) | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_path, | |
trust_remote_code=True | |
) | |
image_files = [] | |
image_paths = [] | |
image_extensions = {".jpg", ".jpeg", ".png", ".bmp", ".gif", ".tiff"} | |
for filename in sorted(list(os.listdir(cfg.image_folder))): | |
if os.path.splitext(filename)[1].lower() in image_extensions: | |
image_files.append(filename) | |
image_paths.append(os.path.join(cfg.image_folder, filename)) | |
vid_frames = [] | |
for img_path in image_paths: | |
img = Image.open(img_path).convert('RGB') | |
vid_frames.append(img) | |
if cfg.select > 0: | |
img_frame = vid_frames[cfg.select - 1] | |
print(f"Selected frame {cfg.select}") | |
print(f"The input is:\n{cfg.text}") | |
result = model.predict_forward( | |
image=img_frame, | |
text=cfg.text, | |
tokenizer=tokenizer, | |
) | |
else: | |
print(f"The input is:\n{cfg.text}") | |
result = model.predict_forward( | |
video=vid_frames, | |
text=cfg.text, | |
tokenizer=tokenizer, | |
) | |
prediction = result['prediction'] | |
print(f"The output is:\n{prediction}") | |
if '[SEG]' in prediction and Visualizer is not None: | |
_seg_idx = 0 | |
pred_masks = result['prediction_masks'][_seg_idx] | |
for frame_idx in range(len(vid_frames)): | |
pred_mask = pred_masks[frame_idx] | |
if cfg.work_dir: | |
os.makedirs(cfg.work_dir, exist_ok=True) | |
visualize(pred_mask, image_paths[frame_idx], cfg.work_dir) | |
else: | |
os.makedirs('./temp_visualize_results', exist_ok=True) | |
visualize(pred_mask, image_paths[frame_idx], './temp_visualize_results') | |
else: | |
pass | |