File size: 38,821 Bytes
d59f323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
from typing import Literal

import torch
import torch.nn as nn
import torch.nn.functional as F
from third_parts.mmdet.models.losses import CrossEntropyLoss

from xtuner.registry import BUILDER
from xtuner.model.utils import get_peft_model_state_dict

from .lisa import LisaModel

from xtuner.utils import PROMPT_TEMPLATE
from xtuner.tools.utils import get_stop_criteria
from transformers import GenerationConfig
from projects.llava_sam2.models.preprocess.image_resize import DirectResize

import numpy as np

from .internvl import InternVL_Slowfast
from .utils import dynamic_preprocess

import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode

from pycocotools import mask as _mask

from types import MethodType

from xtuner.model.utils import guess_load_checkpoint

from mmcv.ops import point_sample
from third_parts.mmdet.models.utils import get_uncertain_point_coords_with_randomness

class VideoLLaVASAMModel(LisaModel):
    def __init__(self,
                 mllm,
                 tokenizer,
                 grounding_encoder,
                 loss_mask=None,
                 loss_dice=None,
                 torch_dtype=torch.bfloat16,
                 pretrained_pth=None,
                 frozen_sam2_decoder=True,
                 special_tokens=None,
                 loss_sample_points=False,
                 num_points=12544,
                 # for slow fast arch
                 fast_pool=False,
                 fast_pool_size=4,
                 use_fast_supervision=False,
                 # for inference
                 phi3=True,
                 template=None,
                 # for arch selection
                 arch_type:Literal['intern_vl', 'qwen', 'llava']='intern_vl',
                 # for inference large model
                 split_model=False,
                 # ext
                 preprocessor=None,
                 # bs
                 bs:int=0,
                 ):
        super(LisaModel, self).__init__()
        self.split_model = split_model
        if split_model:
            mllm.model_split = split_model
        if special_tokens is None:
            special_tokens = ['[SEG]']
        self.special_tokens = special_tokens
        if 'special_tokens' not in mllm.keys():
            mllm.special_tokens = special_tokens
        self.mllm = BUILDER.build(mllm)
        self.arch_type = arch_type

        self.fast_pool = fast_pool
        self.fast_pool_size = fast_pool_size
        if hasattr(self.mllm, '_post_init'):
            self.mllm._post_init(
                fast_pool_size=self.fast_pool_size,
                fast_pool=self.fast_pool
            )
        else:
            print("No _post_init() in mllm !!!")

        self.tokenizer = BUILDER.build(tokenizer)
        self._add_special_tokens()
        self.grounding_encoder = BUILDER.build(grounding_encoder)
        self.grounding_encoder.requires_grad_(False)
        if not frozen_sam2_decoder:
            self.grounding_encoder.sam2_model.sam_mask_decoder.requires_grad_(True)

        if self.mllm.use_llm_lora:
            if self.arch_type == 'intern_vl':
                self.mllm.model.language_model.base_model.model.get_input_embeddings().requires_grad_(True)
                self.mllm.model.language_model.base_model.model.get_output_embeddings().requires_grad_(True)
            elif self.arch_type == 'qwen':
                self.mllm.model.model.base_model.model.get_input_embeddings().requires_grad_(True)
                self.mllm.model.get_output_embeddings().weight.requires_grad_(True)
            elif self.arch_type == 'llava':
                self.mllm.model.language_model.base_model.model.get_input_embeddings().requires_grad_(True)
                self.mllm.model.language_model.base_model.model.get_output_embeddings().requires_grad_(True)
            # self.mllm.model.language_model.base_model.model.lm_head.requires_grad_(True)
            # self.mllm.model.language_model.base_model.model.model.embed_tokens.requires_grad_(True)

        if self.arch_type == 'intern_vl':
            in_dim = self.mllm.model.config.llm_config.hidden_size
        elif self.arch_type == 'qwen':
            in_dim = self.mllm.model.config.hidden_size
        elif self.arch_type == 'llava':
            # for llava, the hidden size is in language model
            in_dim = self.mllm.model.language_model.config.hidden_size
        out_dim = self.grounding_encoder.hidden_dim
        self.text_hidden_fcs = nn.Sequential(
            nn.Linear(in_dim, in_dim), nn.ReLU(inplace=True),
            nn.Linear(in_dim, out_dim), nn.Dropout(0.0)
        )

        if use_fast_supervision:
            self.text_exist_fcs = nn.Sequential(
                nn.Linear(in_dim, in_dim), nn.ReLU(inplace=True),
                nn.Linear(in_dim, 1), nn.Dropout(0.0)
            )

        self.loss_mask = BUILDER.build(loss_mask)
        self.loss_dice = BUILDER.build(loss_dice)
        if use_fast_supervision:
            self.loss_exists = BUILDER.build(dict(
                type=CrossEntropyLoss,
                use_sigmoid=True,
                reduction='mean',
                loss_weight=1.0)
            )

        self.torch_dtype = torch_dtype

        if pretrained_pth is not None:
            pretrained_state_dict = guess_load_checkpoint(pretrained_pth)
            self.load_state_dict(pretrained_state_dict, strict=False)
            print(f'Load pretrained weight from {pretrained_pth}')

        self.loss_sample_points = loss_sample_points
        self.num_points = num_points
        self.oversample_ratio = 3.0
        self.importance_sample_ratio = 0.75

        if fast_pool:
            self.fast_token_idx = self.tokenizer("<FAST_IMG_CONTEXT>", add_special_tokens=False).input_ids[0]
        else:
            self.fast_token_idx = None
        self.use_fast_supervision = use_fast_supervision

        self.phi3 = phi3
        self.template = template

        if preprocessor is None:
            self.preprocessor = preprocessor
        else:
            self.preprocessor = BUILDER.build(preprocessor)

        self.bs = bs

    def _merge_lora(self):
        # print('pre merge lora: ', self.mllm.model.language_model.base_model.model.get_input_embeddings().weight.shape)
        try:
            self.mllm.model.language_model = self.mllm.model.language_model.merge_and_unload()
        except:
            print("Skip language model, no LoRA in it !!!")
        try:
            self.mllm.model.vision_model = self.mllm.model.vision_model.merge_and_unload()
        except:
            print("Skip vision encoder, no LoRA in it !!!")
        # print('after merge lora: ', self.mllm.model.language_model.get_input_embeddings().weight.shape)
        return

    def all_state_dict(self, *args, **kwargs):
        state_dict = super(LisaModel, self).state_dict(*args, **kwargs)
        return state_dict

    def activation_checkpointing_disable(self):
        if self.arch_type == 'qwen':
            self.mllm.model.model.gradient_checkpointing_disable()
        else:
            self.mllm.model.language_model.gradient_checkpointing_disable()


    def _add_special_tokens(self):
        special_tokens = self.special_tokens
        _num_new_tokens = self.tokenizer.add_tokens(special_tokens, special_tokens=True)

        # if not isinstance(self.mllm.model.language_model.get_output_embeddings(), nn.Linear):
        #     print("Change the lm_head to nn.Linear !!!")
        #     transposed = False
        #     old_lm_head = self.mllm.model.language_model.get_output_embeddings()
        #     old_num_tokens, old_lm_head_dim = (
        #         old_lm_head.weight.size() if not transposed else old_lm_head.weight.t().size()
        #     )
        #     new_lm_head_shape = (old_lm_head_dim, len(tokenizer)) if not transposed else (
        #     len(tokenizer), old_lm_head_dim)
        #     has_new_lm_head_bias = old_lm_head.bias is not None
        #     new_lm_head = nn.Linear(*new_lm_head_shape, bias=has_new_lm_head_bias).to(self.device)
        #     new_lm_head.weight = old_lm_head.weight
        #     new_lm_head.bias = old_lm_head.bias
        #     self.mllm.model.language_model.set_output_embeddings(new_lm_head)

        # this is already done in mllm
        # if num_new_tokens > 0:
        #     self.mllm.model.language_model.resize_token_embeddings(len(self.tokenizer))

        # assert isinstance(self.mllm, InternVL_Slowfast)
        self.seg_token_idx = self.tokenizer("[SEG]", add_special_tokens=False).input_ids[0]

    def state_dict(self, *args, **kwargs):
        state_dict = super(LisaModel, self).state_dict(*args, **kwargs)
        from collections import OrderedDict

        to_return = OrderedDict()
        # Step 1. visual_encoder
        if self.mllm.use_visual_encoder_lora:
            to_return.update(
                get_peft_model_state_dict(
                    self.mllm.model.vision_model, state_dict=state_dict))
            raise NotImplementedError
        elif not self.mllm.freeze_visual_encoder:
            to_return.update({
                k: v
                for k, v in state_dict.items() if 'visual_encoder.' in k
            })
            raise NotImplementedError
        # Step 2. LLM
        if self.mllm.use_llm_lora:
            if self.arch_type == 'intern_vl':
                to_return.update(
                    get_peft_model_state_dict(self.mllm.model.language_model, state_dict=state_dict)
                )
            elif self.arch_type == 'qwen':
                to_return.update(
                    get_peft_model_state_dict(self.mllm.model.model, state_dict=state_dict)
                )
            elif self.arch_type == 'llava':
                to_return.update(
                    get_peft_model_state_dict(self.mllm.model.language_model, state_dict=state_dict)
                )
        elif not self.mllm.freeze_llm:
            to_return.update(
                {k: v
                 for k, v in state_dict.items() if 'llm.' in k})
            raise NotImplementedError
        # Step 3. Projector
        to_return.update(
            {k: v
             for k, v in state_dict.items() if 'mlp1.' in k})
        to_return.update(
            {k: v
             for k, v in state_dict.items() if 'model.multi_modal_projector.' in k})

        # Step 4. mask decoder of grounding model (SAM/SAM2)
        to_return.update(
            {k: v
             for k, v in state_dict.items() if 'mask_decoder' in k})

        # Step 5. others (fcs)
        to_return.update(
            {k: v
             for k, v in state_dict.items() if 'text_hidden_fcs.' in k})
        to_return.update(
            {k: v
             for k, v in state_dict.items() if 'text_exist_fcs.' in k}
        )
        to_return.update(
            {k: v
             for k, v in state_dict.items() if 'lm_head.weight' in k or 'output' in k and 'sam2_model' not in k})
        to_return.update(
            {k: v
             for k, v in state_dict.items() if 'embed_tokens.weight' in k or 'tok_embeddings' in k})
        return to_return

    def check_obj_number(self, pred_embeddings_list_video, gt_masks_video, fix_number=5):
        assert len(pred_embeddings_list_video) == len(gt_masks_video)
        ret_pred_embeddings_list_video = []
        ret_gt_masks_video = []
        for pred_mebeds, gt_masks in zip(pred_embeddings_list_video, gt_masks_video):
            # assert len(pred_mebeds) == len(gt_masks)
            if len(pred_mebeds) != len(gt_masks):
                min_num = min(len(pred_mebeds), len(gt_masks))
                pred_mebeds = pred_mebeds[:min_num]
                gt_masks = gt_masks[:min_num]
            if len(pred_mebeds) != fix_number:
                if len(pred_mebeds) > fix_number:
                    _idxs = torch.randperm(pred_mebeds.shape[0])
                    _idxs = _idxs[:fix_number]
                    pred_mebeds = pred_mebeds[_idxs]
                    gt_masks = gt_masks[_idxs]
                else:
                    n_repeat = fix_number // len(pred_mebeds) + 1
                    pred_mebeds = torch.cat([pred_mebeds] * n_repeat, dim=0)[:fix_number]
                    gt_masks = torch.cat([gt_masks] * n_repeat, dim=0)[:fix_number]
            ret_pred_embeddings_list_video.append(pred_mebeds)
            ret_gt_masks_video.append(gt_masks)
        return ret_pred_embeddings_list_video, ret_gt_masks_video

    def _get_pesudo_data(self, dtype, device):
        assert self.bs > 0
        g_pixel_values = torch.zeros((3, 1024, 1024), dtype=dtype, device=device)
        g_pixel_values = [g_pixel_values] * self.bs
        frames_per_batch = [1] * self.bs
        gt_masks = torch.zeros((5, 256, 256), dtype=torch.uint8, device=device)
        gt_masks = [gt_masks] * self.bs
        return g_pixel_values, frames_per_batch, gt_masks

    def forward(self, data, data_samples=None, mode='loss'):
        g_pixel_values = data.pop('g_pixel_values', None)
        gt_masks = data.pop('masks', None)
        frames_per_batch = data.pop('frames_per_batch', None)
        input_ids = data['input_ids']
        fast_exists = data.pop('fast_exists', None)
        # if self.arch_type == 'llava' and data.get('pixel_values', None) is not None:
        #     data['pixel_values'] = data['pixel_values'].to(self.torch_dtype)
        if self.fast_pool:
            output = self.mllm(data, data_samples, mode, fast_token_idx=self.fast_token_idx)
        else:
            output = self.mllm(data, data_samples, mode)
        if gt_masks is None:
            # require zero seg datas
            seg_valid = False
            g_pixel_values, frames_per_batch, gt_masks = self._get_pesudo_data(
                dtype=self.torch_dtype,
                device=input_ids.device,
            )
        else:
            seg_valid = True

        assert frames_per_batch, "Video Lisa require frames_per_batch !!!"
        # print('frmaes_per_batch: ', frames_per_batch)
        ori_size_list = []
        for i_bs, mask in enumerate(gt_masks):
            mask_shape = mask.shape[-2:]
            ori_size_list += [mask_shape] * frames_per_batch[i_bs]

        seg_token_mask = input_ids == self.seg_token_idx

        hidden_states = output.hidden_states
        hidden_states = self.text_hidden_fcs(hidden_states[-1])

        _zero = hidden_states.mean() * 0.0
        if seg_valid:
            pred_embeddings = hidden_states[seg_token_mask] + _zero
        else:
            pred_embeddings = hidden_states[:, :5].flatten(0, 1) + _zero

        seg_token_counts = seg_token_mask.int().sum(-1)
        if not seg_valid:
            seg_token_counts += 5

        pred_embeddings_list_ = torch.split(pred_embeddings, seg_token_counts.tolist(), dim=0)
        pred_embeddings_list = []
        for item in pred_embeddings_list_:
            if len(item) != 0:
                pred_embeddings_list.append(item)
        pred_embeddings_list_video, success = self.genetate_video_pred_embeddings(
            pred_embeddings_list, frames_per_batch)
        if not success:
            raise NotImplementedError

        if self.use_fast_supervision and fast_exists is not None:
            # gt_exists = []
            # for id_x, _fast_exists in enumerate(fast_exists):
            #     num_tot = _fast_exists.shape[0]
            #     num_conv = gt_masks[id_x].shape[0] // frames_per_batch[id_x]
            #     assert num_tot % num_conv == 0
            #     gt_exists.append(_fast_exists.reshape(num_conv, num_tot // num_conv))
            fast_flag = input_ids == self.fast_token_idx
            fast_tokens = output.hidden_states[-1][fast_flag]
            exists_logit = self.text_exist_fcs(fast_tokens[self.fast_pool_size ** 2 - 1::self.fast_pool_size ** 2])
            gt_exists = torch.cat(fast_exists)
            loss_exists = self.loss_exists(exists_logit, gt_exists)
        else:
            loss_exists = None

        gt_masks_video = self.process_video_gt_masks(gt_masks, frames_per_batch)
        pred_embeddings_list_video, gt_masks_video = self.check_obj_number(
            pred_embeddings_list_video, gt_masks_video
        )
        g_pixel_values = torch.stack([
            self.grounding_encoder.preprocess_image(pixel) for pixel in g_pixel_values
        ])
        num_objs = pred_embeddings_list_video[0].shape[0]
        num_frames = len(pred_embeddings_list_video)
        language_embeddings = torch.cat(pred_embeddings_list_video, dim=0)[:, None]
        sam_states = self.grounding_encoder.get_sam2_embeddings(g_pixel_values, expand_size=num_objs)
        pred_masks = self.grounding_encoder.inject_language_embd(sam_states, language_embeddings, nf_nobj=(num_frames, num_objs))

        gt_masks = [F.interpolate(gt_mask.unsqueeze(0), size=pred_masks[0].shape[-2:], mode='nearest').squeeze(0) for gt_mask in gt_masks_video]
        gt_masks = torch.cat(gt_masks, dim=0)
        pred_masks = pred_masks.flatten(0, 1)

        loss_mask, loss_dice = 0, 0
        if len(pred_masks) != len(gt_masks):
            # drop this data
            print(f"Pred mask shape {pred_masks.shape} is not equal to gt_mask shape {gt_masks.shape} !!!")
            min_num = min(len(pred_masks), len(gt_masks))
            pred_masks = pred_masks[:min_num]
            gt_masks = gt_masks[:min_num]
            seg_valid = False

        if self.loss_sample_points:
            sampled_pred_mask, sampled_gt_mask = self.sample_points(pred_masks, gt_masks)
            sam_loss_dice = self.loss_dice(
                sampled_pred_mask,
                sampled_gt_mask, avg_factor=(len(gt_masks) + 1e-4))
            sam_loss_mask = self.loss_mask(
                sampled_pred_mask.reshape(-1),
                sampled_gt_mask.reshape(-1),
                avg_factor=(pred_masks.shape[0] * sampled_pred_mask.shape[1] + 1e-4))
        else:
            sam_loss_mask = self.loss_mask(pred_masks, gt_masks)
            sam_loss_dice = self.loss_dice(pred_masks, gt_masks)
        loss_mask += sam_loss_mask
        loss_dice += sam_loss_dice

        if not seg_valid:
            _scale = 0.0
        else:
            _scale = 1.0
        loss_mask = loss_mask * _scale
        loss_dice = loss_dice * _scale

        loss_dict = {
            'loss_mask': loss_mask,
            'loss_dice': loss_dice,
            'llm_loss': output.loss,
        }
        if loss_exists is not None:
            loss_dict['loss_exists'] = loss_exists
        return loss_dict

    def sample_points(self, mask_pred, gt_masks):
        gt_masks = gt_masks.unsqueeze(1)
        gt_masks = gt_masks.to(mask_pred)
        mask_pred = mask_pred.unsqueeze(1)
        # (N, 1, h, w)

        with torch.no_grad():
            points_coords = get_uncertain_point_coords_with_randomness(
                mask_pred.to(torch.float32), None, self.num_points,
                self.oversample_ratio, self.importance_sample_ratio)
            # shape (num_total_gts, h, w) -> (num_total_gts, num_points)
            mask_point_targets = point_sample(
                gt_masks.float(), points_coords).squeeze(1)
        # shape (num_queries, h, w) -> (num_queries, num_points)
        mask_point_preds = point_sample(
            mask_pred.to(torch.float32), points_coords.to(torch.float32)).squeeze(1)
        return mask_point_preds.to(mask_pred.dtype), mask_point_targets.to(mask_pred.dtype)

    def genetate_video_pred_embeddings(self, pred_embeddings_list, frames_per_batch):
        if len(pred_embeddings_list) == len(frames_per_batch):
            success = True
        else:
            success = False
            print("len(pred_embeddings_list):{} is not equal to len(frames_per_batch):{} !!!".format(len(pred_embeddings_list), len(frames_per_batch)))
        pred_embeddings_list_video = []
        for pred_embedding_batch, frame_nums in zip(pred_embeddings_list, frames_per_batch):
            pred_embeddings_list_video += [pred_embedding_batch] * frame_nums
        return pred_embeddings_list_video, success

    def process_video_gt_masks(self, gt_masks, frames_per_batch):
        gt_masks_video = []

        assert len(gt_masks) == len(frames_per_batch)
        for gt_masks_batch, frames_num in zip(gt_masks, frames_per_batch):
            N, H, W = gt_masks_batch.shape
            assert N % frames_num == 0
            gt_masks_batch = gt_masks_batch.reshape(
                N // frames_num, frames_num, H, W)
            for i in range(frames_num):
                gt_masks_video.append(gt_masks_batch[:, i])
        return gt_masks_video

    def preparing_for_generation(self, metainfo, **kwargs):
        # set stop criteria and generation configs for model
        assert hasattr(self, 'tokenizer'), "The Model does not have the tokenizer!!!"
        self.bot_name = 'BOT'
        if 'template' in metainfo.keys():
            template = metainfo['template']
        else:
            template = PROMPT_TEMPLATE['phi3_chat']
        if self.template is None:
            self.template = template
        stop_words = []
        stop_words += self.template.get('STOP_WORDS', [])
        stop_criteria = get_stop_criteria(
            tokenizer=self.tokenizer, stop_words=stop_words)
        self.stop_criteria = stop_criteria

        default_generation_kwargs = dict(
            max_new_tokens=512,
            do_sample=False,
            eos_token_id=self.tokenizer.eos_token_id,
            pad_token_id=(
                self.tokenizer.pad_token_id
                if self.tokenizer.pad_token_id is not None
                else self.tokenizer.eos_token_id
            ),
        )
        default_generation_kwargs.update(metainfo.get('generation_kwargs', {}))
        self.gen_config = GenerationConfig(**default_generation_kwargs)
        self.init_prediction_config = True

        self.mllm.to(self.torch_dtype)
        self.text_hidden_fcs.to(self.torch_dtype)
        # if getattr(self, 'text_exist_fcs', None) is not None:
        #     self.text_exist_fcs.to(self.torch_dtype)

        # for sam image processor
        self.extra_image_processor = DirectResize(target_length=1024, )
        # for multi image process
        self.min_dynamic_patch = 1
        if 'max_dynamic_patch' in metainfo.keys():
            self.max_dynamic_patch = metainfo['max_dynamic_patch']
        else:
            self.max_dynamic_patch = 12
        self.downsample_ratio = 0.5
        self.image_size = 448
        self.use_thumbnail = True
        patch_size = 14
        self.patch_size = patch_size

        self.patch_token = int((self.image_size // patch_size) ** 2 * (self.downsample_ratio ** 2))
        self.IMAGENET_MEAN = (0.485, 0.456, 0.406)
        self.IMAGENET_STD = (0.229, 0.224, 0.225)
        self.IMG_CONTEXT_TOKEN = '<IMG_CONTEXT>'
        self.IMG_START_TOKEN = '<img>'
        self.IMG_END_TOKEN = '</img>'
        if self.arch_type == 'qwen':
            self.IMG_CONTEXT_TOKEN = '<|image_pad|>'
            self.IMG_START_TOKEN = ''
            self.IMG_END_TOKEN = ''

        if self.preprocessor is None:
            self.transformer = T.Compose([
                T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
                T.Resize((self.image_size, self.image_size), interpolation=InterpolationMode.BICUBIC),
                T.ToTensor(),
                T.Normalize(mean=self.IMAGENET_MEAN, std=self.IMAGENET_STD)
            ])
            self.preprocessor = None
        else:
            self.transformer = None
            # self.preprocessor = BUILDER.build(self.preprocessor)

        self.VP_START_TOKEN = '<vp>'
        self.VP_END_TOKEN = '</vp>'

        # change phi3 prepare for generation fuction
        if self.phi3:
            self.mllm.model.language_model.prepare_inputs_for_generation = MethodType(prepare_inputs_for_generation, self.mllm.model.language_model)
        return

    def predict_video(self, pixel_values, text_prompts, **kwargs):
        ori_h, ori_w = kwargs['ori_height'], kwargs['ori_width']

        _input_ids = kwargs['input_ids']

        g_pixel_values = kwargs.pop('g_pixel_values', None)
        g_pixel_values = torch.stack([
            self.grounding_encoder.preprocess_image(pixel) for pixel in g_pixel_values
        ])

        fast_pixel_values = kwargs.pop('fast_pixel_values', None)
        if fast_pixel_values is None:
            fast_token_idx = None
        else:
            fast_token_idx = self.fast_token_idx

        predictions = []
        pred_masks = []
        is_exists_list = []
        for input_ids in _input_ids:
            input_ids = torch.tensor(input_ids).unsqueeze(0)
            attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
            pixel_values = pixel_values.to(dtype=self.torch_dtype)
            if fast_pixel_values is not None:
                fast_pixel_values = fast_pixel_values.to(dtype=self.torch_dtype)
            mm_inputs = {
                'pixel_values': pixel_values,
                'input_ids': input_ids,
                'attention_mask': attention_mask,
                'position_ids': None,
                'past_key_values': None,
                'labels': None,
                'fast_pixel_values': fast_pixel_values,
                'fast_token_idx': fast_token_idx,
            }
            if kwargs.get('image_grid_thw', None) is not None:
                mm_inputs['image_grid_thw'] = kwargs['image_grid_thw']

            generate_output = self.mllm.generate(
                **mm_inputs,
                generation_config=self.gen_config,
                streamer=None,
                bos_token_id=self.tokenizer.bos_token_id,
                stopping_criteria=self.stop_criteria,
                output_hidden_states=True,
                return_dict_in_generate=True
            )

            predict = self.tokenizer.decode(generate_output.sequences[0], skip_special_tokens=False).strip()

            # input_text = self.tokenizer.decode(mm_inputs['input_ids'][0], skip_special_tokens=False)
            # print(input_text, generate_output.sequences[0], '\n', predict, self.tokenizer("[SEG]", add_special_tokens=False).input_ids[0])

            predictions.append(predict)

            hidden_states = generate_output.hidden_states
            last_hidden_states = [item[-1][0] for item in hidden_states]
            last_hidden_states = torch.cat(last_hidden_states, dim=0)
            seg_hidden_states = get_seg_hidden_states(
                last_hidden_states, generate_output.sequences[0][:-1],
                seg_id=self.seg_token_idx
            )

            if len(seg_hidden_states) == 0:
                print("Warning, no [SEG] tokens !!!")
                pred_masks.append(torch.zeros((g_pixel_values.shape[0], ori_h, ori_w), dtype=torch.int))
                continue
            elif len(seg_hidden_states) > 1:
                print("Warning, {} [SEG] tokens !!!".format(len(seg_hidden_states)))
                seg_hidden_states = seg_hidden_states[:1]
            seg_hidden_states = self.text_hidden_fcs(seg_hidden_states)

            seg_hidden_states = seg_hidden_states.to(dtype=torch.float32)

            sam_states = self.grounding_encoder.get_sam2_embeddings(g_pixel_values)
            # TODO: change 5
            if len(pixel_values) < 5:
                pred_mask = self.grounding_encoder.language_embd_inference(sam_states, [seg_hidden_states] * pixel_values.shape[0])
            else:
                pred_mask = self.grounding_encoder.language_embd_inference(sam_states, [seg_hidden_states] * 5)
            pred_mask = F.interpolate(
                pred_mask,
                size=(ori_h, ori_w),
                mode='bilinear',
                align_corners=False,
            )
            pred_mask = pred_mask[:, 0]
            pred_mask = pred_mask.sigmoid() > 0.5
            pred_mask = pred_mask.int()
            # supervision
            if self.use_fast_supervision and (input_ids == self.fast_token_idx).sum() > 0:
                fast_flag = input_ids.squeeze(0) == self.fast_token_idx
                len_out = generate_output.sequences[0][:-1].shape[0]
                fast_tokens = last_hidden_states[:-len_out][fast_flag].to(dtype=torch.float32)
                exists_logit = self.text_exist_fcs(fast_tokens[self.fast_pool_size ** 2 - 1::self.fast_pool_size ** 2])
                is_exists = exists_logit.squeeze(-1).sigmoid() > 0.5
                is_exists_list.append(is_exists)
                not_exists = torch.logical_not(is_exists)
                if torch.any(not_exists):
                    pred_mask[not_exists] = pred_mask[not_exists] * 0

            pred_masks.append(pred_mask)
        assert len(pred_masks) == len(text_prompts)
        ret_dict = {
            'prediction': predictions,
            'prediction_masks': [mask_to_rle(_item.cpu().numpy()) for _item in pred_masks],
        }
        if 'id' in kwargs.keys():
            ret_dict['id'] = kwargs['id']

        if len(is_exists_list) > 0:
            ret_dict['is_exists'] = is_exists_list
        return ret_dict


def get_seg_hidden_states(hidden_states, output_ids, seg_id):
    seg_mask = output_ids == seg_id
    n_out = len(seg_mask)
    return hidden_states[-n_out:][seg_mask]

def mask_to_rle(mask):
    rle = []
    for m in mask:
        rle.append(_mask.encode(np.asfortranarray(m.astype(np.uint8))))
        rle[-1]['counts'] = rle[-1]['counts'].decode()
    return rle

from transformers.cache_utils import Cache, DynamicCache

def prepare_inputs_for_generation(
        self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
):
    if past_key_values is not None:
        if isinstance(past_key_values, Cache):
            cache_length = past_key_values.get_seq_length()
            past_length = past_key_values.seen_tokens
            max_cache_length = past_key_values.get_max_length()
        else:
            cache_length = past_length = past_key_values[0][0].shape[2]
            max_cache_length = None

        # Keep only the unprocessed tokens:
        # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
        # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
        # input)
        if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
            input_ids = input_ids[:, -(attention_mask.shape[1] - past_length):]
        # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
        # input_ids based on the past_length.
        elif past_length < input_ids.shape[1]:
            input_ids = input_ids[:, past_length:]
        # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.

        # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
        if (
                max_cache_length is not None
                and attention_mask is not None
                and cache_length + input_ids.shape[1] > max_cache_length
        ):
            attention_mask = attention_mask[:, -max_cache_length:]

    position_ids = kwargs.get('position_ids', None)
    if attention_mask is not None and position_ids is None:
        # create position_ids on the fly for batch generation
        position_ids = attention_mask.long().cumsum(-1) - 1
        position_ids.masked_fill_(attention_mask == 0, 1)
        if past_key_values:
            position_ids = position_ids[:, -input_ids.shape[1]:]

    # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
    if inputs_embeds is not None and (past_key_values is None or len(past_key_values)==0):
        model_inputs = {'inputs_embeds': inputs_embeds}
    else:
        model_inputs = {'input_ids': input_ids}

    model_inputs.update(
        {
            'position_ids': position_ids,
            'past_key_values': past_key_values,
            'use_cache': kwargs.get('use_cache'),
            'attention_mask': attention_mask,
        }
    )
    return model_inputs


class VideoLLaVASAMModel_zero3(VideoLLaVASAMModel):
    def __init__(self,
                 mllm,
                 tokenizer,
                 grounding_encoder,
                 loss_mask=None,
                 loss_dice=None,
                 torch_dtype=torch.bfloat16,
                 pretrained_pth=None,
                 frozen_sam2_decoder=True,
                 special_tokens=['[SEG]', ],
                 loss_sample_points=False,
                 num_points=12544,
                 # for slow fast arch
                 fast_pool=False,
                 fast_pool_size=4,
                 arch_type='intern_vl',
                 # zero3
                 bs=1,
                 ):
        super(VideoLLaVASAMModel_zero3, self).__init__(
            mllm=mllm,
            tokenizer=tokenizer,
            grounding_encoder=grounding_encoder,
            loss_mask=loss_mask,
            loss_dice=loss_dice,
            torch_dtype=torch_dtype,
            pretrained_pth=pretrained_pth,
            frozen_sam2_decoder=frozen_sam2_decoder,
            special_tokens=special_tokens,
            loss_sample_points=loss_sample_points,
            num_points=num_points,
            # for slow fast arch
            fast_pool=fast_pool,
            fast_pool_size=fast_pool_size,
            arch_type=arch_type,
        )
        self.bs = bs

    def _get_pesudo_data(self, dtype, device):
        g_pixel_values = torch.zeros((3, 1024, 1024), dtype=dtype, device=device)
        g_pixel_values = [g_pixel_values] * self.bs
        frames_per_batch = [1] * self.bs
        gt_masks = torch.zeros((5, 256, 256), dtype=torch.uint8, device=device)
        gt_masks = [gt_masks] * self.bs
        return g_pixel_values, frames_per_batch, gt_masks

    def forward(self, data, data_samples=None, mode='loss'):
        g_pixel_values = data.pop('g_pixel_values', None)
        gt_masks = data.pop('masks', None)
        frames_per_batch = data.pop('frames_per_batch', None)
        input_ids = data['input_ids']
        if self.fast_pool:
            output = self.mllm(data, data_samples, mode, fast_token_idx=self.fast_token_idx)
        else:
            output = self.mllm(data, data_samples, mode)

        if gt_masks is None:
            # require zero seg datas
            seg_valid = False
            g_pixel_values, frames_per_batch, gt_masks = self._get_pesudo_data(
                dtype=self.torch_dtype,
                device=input_ids.device,
            )
        else:
            seg_valid = True

        assert frames_per_batch, "Video Lisa require frames_per_batch !!!"
        # print('frmaes_per_batch: ', frames_per_batch)
        ori_size_list = []
        for i_bs, mask in enumerate(gt_masks):
            mask_shape = mask.shape[-2:]
            ori_size_list += [mask_shape] * frames_per_batch[i_bs]

        seg_token_mask = input_ids == self.seg_token_idx

        hidden_states = output.hidden_states
        hidden_states = self.text_hidden_fcs(hidden_states[-1])

        _zero = hidden_states.mean() * 0.0
        if seg_valid:
            pred_embeddings = hidden_states[seg_token_mask] + _zero
        else:
            pred_embeddings = hidden_states[:, :5].flatten(0, 1) + _zero

        seg_token_counts = seg_token_mask.int().sum(-1)
        if not seg_valid:
            seg_token_counts += 5

        pred_embeddings_list_ = torch.split(pred_embeddings, seg_token_counts.tolist(), dim=0)
        pred_embeddings_list = []
        for item in pred_embeddings_list_:
            if len(item) != 0:
                pred_embeddings_list.append(item)
        pred_embeddings_list_video, success = self.genetate_video_pred_embeddings(
            pred_embeddings_list, frames_per_batch)
        if not success:
            raise NotImplementedError
            # return {'llm_loss': output.loss, 'loss_mask': output.loss * 0.0, 'loss_dice': output.loss * 0.0}

        gt_masks_video = self.process_video_gt_masks(gt_masks, frames_per_batch)
        pred_embeddings_list_video, gt_masks_video = self.check_obj_number(
            pred_embeddings_list_video, gt_masks_video
        )
        g_pixel_values = torch.stack([
            self.grounding_encoder.preprocess_image(pixel) for pixel in g_pixel_values
        ])
        # print(f"Done, {g_pixel_values.device} !!!\n\n")
        num_objs = pred_embeddings_list_video[0].shape[0]
        num_frames = len(pred_embeddings_list_video)
        language_embeddings = torch.cat(pred_embeddings_list_video, dim=0)[:, None]
        # print(f"Done, {g_pixel_values.device} !!! {num_frames}---{num_objs}, {language_embeddings.shape}\n\n")
        sam_states = self.grounding_encoder.get_sam2_embeddings(g_pixel_values, expand_size=num_objs)
        pred_masks = self.grounding_encoder.inject_language_embd(sam_states, language_embeddings, nf_nobj=(num_frames, num_objs))

        gt_masks = [F.interpolate(gt_mask.unsqueeze(0), size=pred_masks[0].shape[-2:], mode='nearest').squeeze(0) for gt_mask in gt_masks_video]
        gt_masks = torch.cat(gt_masks, dim=0)
        pred_masks = pred_masks.flatten(0, 1)
        # pred_masks = torch.cat(pred_masks, dim=0)


        bs = len(pred_masks)
        loss_mask, loss_dice = 0, 0
        if len(pred_masks) != len(gt_masks):
            # drop this data
            print(f"Pred mask shape {pred_masks.shape} is not equal to gt_mask shape {gt_masks.shape} !!!")
            min_num = min(len(pred_masks), len(gt_masks))
            pred_masks = pred_masks[:min_num]
            gt_masks = gt_masks[:min_num]
            seg_valid = False

        if self.loss_sample_points:
            sampled_pred_mask, sampled_gt_mask = self.sample_points(pred_masks, gt_masks)
            sam_loss_dice = self.loss_dice(
                sampled_pred_mask,
                sampled_gt_mask, avg_factor=(len(gt_masks) + 1e-4))
            sam_loss_mask = self.loss_mask(
                sampled_pred_mask.reshape(-1),
                sampled_gt_mask.reshape(-1),
                avg_factor=(pred_masks.shape[0] * sampled_pred_mask.shape[1] + 1e-4))
        else:
            sam_loss_mask = self.loss_mask(pred_masks, gt_masks)
            sam_loss_dice = self.loss_dice(pred_masks, gt_masks)
        loss_mask += sam_loss_mask
        loss_dice += sam_loss_dice

        if not seg_valid:
            _scale = 0.0
        else:
            _scale = 1.0
        loss_mask = loss_mask * _scale
        loss_dice = loss_dice * _scale

        loss_dict = {
            'loss_mask': loss_mask,
            'loss_dice': loss_dice,
            'llm_loss': output.loss,
        }
        return loss_dict